
Guest Memory Overcommit

Page hinting, resizing & more

Rik van Riel, Red Hat

KVM Forum 2011



Guest Memory Overcommit
● Why overcommit memory? 
● Problems with memory overcommit
● Async pagefault
● Free page hinting
● Memory resizing vs. Transparent hugepages
● Conclusions

 



Why Overcommit Memory?
 Users want CHEAP virtual machines
● Prices continuously going down
● Migrate providers for a dollar/month/VM savings?

 However, they do want it all
● Always see all the memory they paid for
● Enough CPU available when they need it

 Overcommit is the way to cheap
● Share power/hardware/... with more users
● Hardware is getting cheaper, electricity is not

 Our challenge: make it fast



Problems With Memory Overcommit
 Memory is a non-renewable resource
 Secondary. Storage. Is. Really. Slow.
● Many millions of CPU cycles in one disk seek

 Overcommit is easy
● KVM guest is just like a process
● Host handles swapping and page faults

 Process in guest accesses non-resident memory
● Entire VCPU stalls until swapin disk IO is done!

 Host swaps guest page cache and free pages



Async Pagefault
 Host paging blocks the entire VCPU on swapin
 Most swapins are guest processes in sleepable context
● Anonymous memory
● Page cache
● copy_to/from_user

 Guest can suspend the faulting process instead
● VCPU can run other processes, interrupts, etc

 Implemented by Gleb last year and upstream
 Reduces the impact of host swapins of guest memory
● Still generates disk IO that slows down others
● How to reduce the number of host swapins&outs?



Nested LRU Problem
 Three guests
 Host is swapping
 Host swaps out oldest

guest pages (often free)
 Guest re-uses free pages

for new content
 Swap IO due to free memory
 Content of free pages could

be discarded

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY



Free Page Hinting
 Free pages contain no useful information
● The host could throw away free guest pages!

● Swapout, KSM, etc
● Avoid disk IO on swapout

● Give the guest a fresh page on use
● Avoid disk IO on swapin

 Guest needs to inform host what memory is free
● Can use a big bitmap
● Be careful at state transitions (free->used)



Free Page Hinting Details
 Keep a large bitmap per guest (or per pgdat)
● One bit per (4kB) page
● Use arch_free_page & arch_alloc_page hooks

● Set bit at free time, clear bit at alloc time
● Overhead in the guest: touch a bitmap in alloc & free

 On the host side, check bitmap
● In ksmd, discard unused guest pages
● At swapout time, discard unused pages
● At swapin time

● Give process a fresh page
● Free swap space
● Skip swap IO

 Host side is more overhead, but only when memory is tight
 Interface may also be usable by eg. a JVM



Free Page Hinting Race Conditions
 Swapout & ksmd discard vs. unused->used transition
● Check page unused bit in bitmap
● Unmap page from guest
● Re-check bit in bitmap

● If still set, discard page
● If now clear, remap the same page into the guest

● Hold the right lock in the host to block page faults by the 
process, while doing the re-check

 Swapin IO avoidance
● Can avoid IO if page is touched while the “unused” bit for 

the page is still set
● Page allocator in guest kernel touches the page, before 

clearing the bit



Nested LRU With Free Page Hinting
 Many free pages eliminated
● Swapout & ksmd

 Guests now fit in RAM
● The used memory...

 Swap IO greatly reduced
● We'll never catch them all

 But what if the sum of used

memory exceeds RAM?

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY



Dynamic Memory Resizing
 We can do more than eliminate free memory
● Guest has working set, page cache and free

 When host is near swapout
● Ask each guest to free some memory
● Do not shrink guest below minimum size

 When a guest is near swapout
● Do not shrink memory when asked (or not much)
● Ask the host for some memory back
● Do not grow guest above maximum size



Dynamic Memory Resizing Illustrated

 Ask guests to keep extra

memory free when host

needs it
 Obey guest min/max size
 Avoid even more swap IO
 Combine with cgroups for

guest prioritization
 Fit more guests per host

HOST MEMORYHOST MEMORY

SWAPSWAP

USED FREE
GUEST MEMORY

CACHE



To Balloon or not to balloon?
 Guest resizing traditionally done through a balloon
● Hypercall per freed page (fixable with batching)
● Hopeless memory fragmentation

● Big problem for Transparent Huge Pages (THP)
● Defragmentation would touch more memory

● While the host is already under memory pressure
 May be better off adjusting the guest free memory targets
● Automatically helps defragment memory inside a guest

● Good for THP and slab/slub
● Free page hinting can be used to physically free unused 

guest pages on the host
● A lot fewer hypercalls than any balloon implementation 



Conclusions
 Users want faster, cheaper & more
● Whoever can provide that will be the industry standard
● Needs modifications to both guest and host to work best

 KVM already provides cheaper & more
● Host swapping
● Async pagefault reduces impact of host swapping

 To go faster, we must reduce the IO
● Skip IO on free pages
● Resize the amount of used memory in a guest

● Reduce if lightly used, increase if heavily used
● Depending on memory pressure in host

 Your ideas here...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

