Find your way through the x86 firmware maze

Gerd Hoffmann <kraxel@redhat.com>
October 21nd, 2013
KVM Forum, Edinburgh
Outline

- Some history
- Boot process
 - Focus on seabios
- UEFI
- coreboot
640k is enough for everybody (XT)

- Real mode
- Start exec: 0xFFFFF0
- BIOS Interfaces
 - INT 0x10 -- video
 - INT 0x13 – disk
- Interfaces still in use
 - Boot loader disk access
 - vesafb
A few years later (i386, still ISA)

- Every real mode address space bit is used.
- ROMs extend BIOS interfaces.
 - VGA: better video.
 - NIC: network boot.
 - HBA: scsi disk boot.
- Qemu up to v0.11 (2009) loaded roms this way.
How it looks today (i686 / x86-64, PCI)

- Large BIOS flash
 - high 128k below 1M
- Option ROMs loaded from PCI ROM Bar (or firmware flash).
 - Relocate to high mem, using PMM + big real mode
- Only essential stuff remains below 1M
How it looks today (above 1M)

- Complete flash mapped below 4G
- BIOS Data area at end of RAM
 - private data
 - PMM allocations
 - BIOS tables
seabios initialization sequence (#1)

- Enter 32bit mode.
- Detect RAM, init malloc, relocate into RAM.
- Setup PMM (POST Memory Manager).
- Qemu builds:
 - PCI ressource allocation.
 - Apply chipset & device tweaks.
 - Init pmbase (+ enable pmtimer).
 - Enable legacy IDE ports.
 - Generate / load BIOS tables
 - MPTable, SMBIOS, ACPI
seabios initialization sequence (#2)

- Load vgabios + enable vga console
 - needs 16bit mode transition.
- Detect hardware + init drivers
 - Keyboard, disks+cdroms, usb storage.
- Load non-vga option roms
 - needs 16bit mode transition too.
- Enter 16bit mode, kick boot.
 - Handle BIOS interrupts.
fw_cfg - firmware config interface

- No BIOS Setup, using qemu command line.
 - Bootorder, bootmenu.
- Emulation + real hardware differs.
 - Incomplete emulation.
 - Pimped up i440fx/piix4.
- Load option roms.
BIOS tables

- Informations qemu/firmware provide for the OS
 - MPTable (MP = Multi Processor).
 - Created by seabios.
 - SMP + APIC.
 - SMBIOS (System Management BIOS)
 - DMIBIOS successor (dmidecode).
 - Created by seabios.
 - Partly configurable via fw_cfg.
 - ACPI (Advanced Configuration and Power Interface)
 - Old: seabios reads info from fw_cfg and generates tables.
 - New: qemu generates acpi tables, seabios loads them from fw_cfg.
ROM: vgabios

- lgpl vgabios
 - Using bcc (real mode compiler)
 - Still used for blobs in qemu.git
- seavgabios
 - Using .code16gcc support in binutils, like seabios.
 - Lots of 32bit prefixes in the code.
 - Old x86emu versions barf on it.
 - Old Xorg vesa driver breaks (-vga std, x86_64).
- support VBE 2.0 (VESA BIOS Extensions).
ROM: ipxe (network boot).

```
iPXENET 1.0.0+ (09c5) -- Open Source Network Boot Firmware -- http://ipxe.org
Features: HTTP iSCSI DNS TFTP AoE bzImage ELF MBOOT PXE PXEXT Menu
net0: 52:54:00:12:34:56 using virtio-net on PCI00:03.0 (open)
    [Link:up, TX:0 TXE:0 RX:0 RXE:0]
DHCP (net0 52:54:00:12:34:56)....... ok
net0: 10.0.2.15/255.255.255.0 gw 10.0.2.2
Next server: 10.0.2.2
Filename: http://192.168.2.14/tftpboot/pxelinux.0
http://192.168.2.14/tftpboot/pxelinux.0... ok

PXELINUX 4.0Z 2010-07-21 Copyright (C) 1994-2010 H. Peter Anvin et al
!PXE entry point found (we hope) at 9C7E:0307 via plan A
UNDI code segment at 9C7E len 074A
UNDI data segment at 9CF3 len 2CC8
Getting cached packet 01 02 03
My IP address seems to be 0A00000F 10.0.2.15
ip=10.0.2.15:10.0.2.2:10.0.2.2:10.0.2.2:255.255.255.0
BOOTIP=01-52-54-00-12-34-56
SYSSUID=00000000-0000-0000-0000-000000000000
TFTP prefix: http://192.168.2.14/tftpboot/
Trying to load: pxelinux.cfg/default  ok
```
non-ide disk/cdrom boot.

- ROMS are usable.
 - extboot (obsolete, disk only).
 - lsi53c895a: vendor rom.
- SCSI support is in seabios.
 - generic code is there anyway (usb).
 - only need code to detect HBA + send SCSI requests.
 - most qemu HBAs have seabios drivers these days.
- AHCI / virtio-blk drivers are in seabios too.
ROM: others

- Direct kernel boot
 - linuxboot.bin, multiboot.bin
- lapic accel for WinXP
 - kvmvapic.bin
- These ROMs are loaded from fw_cfg.
seabios boot menu

QEMU (kvm2013-bootmenu)

Machine View

SeaBIOS (version rel-1.7.3.2-0-gece025f-20130930_111555-nilsson.home.kraxel.org)

iPXE (http://ipxe.org) 00:04.0 CA00 PCI2.10 PnP PMM+3FFC0890+3FF20890 CA00

Press F12 for boot menu.

Select boot device:

1. Linux loader
2. virtio-scsi Drive QEMU QEMU HARDDISK 1.6.
3. Virtio disk PCI:0:3
4. AHCI/0: QEMU HARDDISK ATA-7 Hard-Disk (1024 MiBytes)
5. DVD/CD [virtio-scsi Drive QEMU QEMU CD-ROM 1.6.]
6. DVD/CD [USB MSC Drive QEMU QEMU CD-ROM 1.6.]
7. iPXE (PCI 00:04.0)
8. Legacy option rom
9. Floppy [drive A]

Gerd Hoffmann
Where to go from here?

- BIOS doesn't fit any more.
 - Real mode limits even boot loaders these days.
- UEFI.
- coreboot.
UEFI

- Multiarch: ia64, ia32, x64, arm.
- Modern feature set.
 - Network support.
 - Filesystem support.
 - Boot menu can select OS.
- Must-have for Windows support.
UEFI with qemu

- Tianocore / EDK2 (EFI Developer Kit)
- OVMF (Open Virtual Machine Firmware)
- CSM (Compatibility Support Module):
 - Allows Firmware to support both EFI and non-EFI OSes.
 - Optional, brings back (some) real mode mess.
 - seabios can be compiled as csm for ovmf.
OVMF qemu vga support

- without CSM
 - EFI driver: QemuVideoDxe
 - supports stdvga, cirrus, qxl
- with CSM:
 - using vgabios ...
OVMF qemu storage support

- EDK2 has IDE drivers.
- OVMF has virtio drivers.
 - VirtioBlkDxe.
 - VirtioScsiDxe.
- fw_cfg bootorder is supported.
UEFI network boot roms

```
$ EfiRom --dump 1af41000.rom
Image 1 -- Offset 0x0
  ROM header contents
    Signature  0xA055
    PCIR offset 0x001C
    Signature  PCIR
    Vendor ID  0x1AF4
    Device ID  0x1000
    [ ... ]
    Code type  0x00
Image 2 -- Offset 0x10600
  ROM header contents
    [ ... ]
    Code type  0x03  (EFI image)
  EFI ROM header contents
    EFI Signature  0xE0EF1
    Compression Type  0x0001 (compressed)
    Machine type  0x014C (IA32)
    Subsystem  0x0008 (EFI boot service driver)
    EFI image offset  0x0034 (0x10634)
Image 3 -- Offset 0x1D800
    [ ... ]
    Machine type  0x8664 (unknown)
    [ ... ]
```

Gerd Hoffmann
OVMF boot menu

Boot Manager

Boot Option Menu
Red Hat Enterprise Linux
EFI DVD/CDROM
EFI Network
Legacy Floppy
Floppy
Legacy Hard Drive
 Primary Master Harddisk
Legacy CD ROM
 Secondary Master CDROM
EFI Internal Shell
EFI Floppy
EFI Floppy 1

Device Path:
HD(1,GPT,6058046D-1362-4446-8C50-C3BC492A4E6)
2,08800,0x649000\EFI\redhat\grub.efi

F1=Move Highlight <Enter>=Select Entry Esc=Exit
Coreboot

- Project started as linuxbios.
- Supports x86, arm.
- Boot process
 - Initialize hardware.
 - Deploy cbtables.
 - Hand off control to payload.
 - Included in the flash image.
 - Payload needs no hardware-specific code.
- No nic/disk/... drivers.
Coreboot cbtables

Fedora release 19 (Schrödinger’s Cat)
Kernel 3.10.11-200.fc19.x86_64 on an x86_64 (tty1)

fedora login: root
Password:
Last login: Fri Oct 18 15:55:03 on ttyS0
[root@fedora ~]# cbmem -l
CBMEM table of contents:

<table>
<thead>
<tr>
<th>ID</th>
<th>START</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x3ffe5200</td>
<td>0x00001ae0</td>
</tr>
<tr>
<td>1</td>
<td>0x3ffe0200</td>
<td>0x00000200</td>
</tr>
<tr>
<td>2</td>
<td>0x3fe0400</td>
<td>0x0001000</td>
</tr>
<tr>
<td>3</td>
<td>0x3fed0400</td>
<td>0x00000200</td>
</tr>
<tr>
<td>4</td>
<td>0x3fed0600</td>
<td>0x00001000</td>
</tr>
<tr>
<td>5</td>
<td>0x3fed1600</td>
<td>0x0000b400</td>
</tr>
<tr>
<td>6</td>
<td>0x3fedca00</td>
<td>0x00000000</td>
</tr>
<tr>
<td>7</td>
<td>0x3feddd200</td>
<td>0x00100000</td>
</tr>
<tr>
<td>8</td>
<td>0x3fdedd200</td>
<td>0x00000000</td>
</tr>
</tbody>
</table>

[root@fedora ~]# _
Coreboot payloads

- seabios
- tianocore (wip)
- grub2
- linux kernel
- memtest
Coreboot on QEMU

- Supports both i440fx and q35.
 - Not in a single ROM though.
- Limited fw_cfg support.
 - Doesn't read smbios entries.
 - SMP uses NR_CPUS only.
- ACPI support has some bugs.
 - Loading tables from qemu will fix that.
Coreboot flash structure

```
kraxel@zweiblum:~/tmp
$ cbfstool coreboot.rom print
coreboot.rom: 2048 kB, bootblocksize 2328, romsize 2097152, offset 0x0
alignment: 64 bytes

Name                  Offset  Type          Size
----------------------  ------  ------------  ----
cmos_layout.bin        0x0     cmos_layout   1556
pci8086,27a2.rom       0x640   optionrom    65536
fallback/romstage      0x10680 stage         45439
fallback/coreboot_ram  0x1b840 stage         122295
fallback/payload       0x39640 payload      51626
pci8086,109a.rom       0x46040 raw           66560
/etc/ps2-keyboard-spinup 0x56480 raw           8
/etc/boot-menu-wait    0x564c0 raw           8
(empty)                0x56500 null         1741208
$```

Coreboot on Lenovo T60
Hands on: firmware playground

- Firmware repository
  - http://www.kraxel.org/repos/
  - Jenkins building from upstream git master
    - seabios, ipxe, edk2, coreboot
- Firmware images
  - Ready for use via “-bios $file” or “-L $path”
- Tools
  - EfiRom: edk2.git-tools
  - cbmem, cbfstool: coreboot.git-tools
Hands on: troubleshooting

- ioport 0x402 has established for firmware debug logging
  - `qemu -chardev stdio,id=fw \ -device isa-debugcon,iobase=0x402,chardev=fw`
- coreboot logs can be inspected after boot using 'cbmem -c'