
Asias He, Red Hat Inc.1

Virtio-blk Performance Improvement

Asias He <asias@redhat.com>, Red Hat
Nov 8, 2012, Barcelona, Spain
KVM FORUM 2012

mailto:asias@redhat.com

Asias He, Red Hat Inc.2

Storage transport choices in KVM

● Full virtualization : IDE, SATA, SCSI
● Good guest compatibility
● Lots of trap-and-emulate, bad performance

● Para virtualization: virtio-blk, virtio-scsi
● Virtio ring buffer provides efficient transport for guest-host

communication
● Provide more virtualization friendly interface, higher

performance

● Device assignment
● Pass hardware to guest, high-end usage, high performance
● Exclusive access, limited number of slot in a server, hard to

do live migration

Asias He, Red Hat Inc.3

Why improve virtio-blk

● I/O intensive applications
● Need high storage performance

● Virtio-blk
● Simple, Just simple read/write/flush command, no scsi

overhead, Fast SSD -> PCIE interface instead of SCSI
or SATA interface

● Available for a while, benefits existing users
● virtio-blk is about ~3 times faster than virtio-scsi in my

setup

● virtio-scsi
● Rich features: True scsi device, Thousands of disks per

virtio-scsi device, Effective SCSI passthrough

Asias He, Red Hat Inc.4

Lifecycle of a I/O request in virtio-blk
APP

VFS / Filesystem

Generic Block Layer

IO Scheduler

virtio-blk.ko

VFS / Filesystem

QEMU/LKVM

Generic Block Layer

IO Scheduler

Hardware Disks

VFS / Filesystem

Block Device Driver

Guest

Host

Struct bio

Struct request

Virito-blk req

Read() Write()
AIO: io_submit()

Asias He, Red Hat Inc.5

How to improve virtio-blk performance
APP

VFS / Filesystem

Generic Block Layer

IO Scheduler

virtio-blk.ko

QEMU/LKVM

Generic Block Layer

IO Scheduler

Hardware Disks

VFS / Filesystem

Block Device Driver

Guest

Host

APP

Generic Block Layer

virtio-blk.ko

VFS / Filesystem

vhost-blk.ko

Generic Block Layer

IO Scheduler

Harware Disks

Block Device Driver

1) Bio based
 virtio-blk

2) vhost-blk

Asias He, Red Hat Inc.6

Bio-based virtio-blk: What is it (1/2)

● Two types of block device dirvers
● struct request based

● Takes the advantages of I/O scheduler
● Most drivers

● struct bio based
● Skips the I/O scheduler
● Few drivers, e.g. Ramdisk driver

Asias He, Red Hat Inc.7

Bio-based virtio-blk: What is it (2/2)

● Vrito-blk block device driver
● Reqeust-based virtio-blk (original)

● Bio-based virtio-blk (new)
● Adds bio based I/O path to virtio-blk
● Shorten the I/O path in Guest
● Less lock contention (q->queue_lock), lower cpu utilization
● Higher IOPS
● Lower Latency

Do we really need the I/O scheduling twice in both
guest and host? (esp. with high speed SSD device)

Asias He, Red Hat Inc.8

generic_make_request()

Bio-based virtio-blk: Architecture

q->make_request_fn()

blk_queue_bio()

virtblk_make_request()

q->request_fn()

virtblk_request()

virtqueue_add_buf()

virtqueue_kick()

Req-based
I/O Path

Bio-based
I/O PathI/O scheduler

Bio

Virtio-blk req

Asias He, Red Hat Inc.9

Bio-based virtio-blk: Performance evaluation 1

● 1) On Ramdisk device (fio test 8 vcpu, direct = 1)

 IOPS boost : 28%, 24%, 21%, 16%

 Latency improvement : 32%, 17%, 21%, 16%

seq-read seq-write rand-read rand-write
0

5

10

15

20

25

30

35

IOPS

Latency

Asias He, Red Hat Inc.10

Bio-based virtio-blk: Performance evaluation 2

● 2) On Fusion-io device (fio test 8 vcpu, direct = 1)

 IOPS boost : 11%, 11%, 13%, 10%

 Latency improvement : 10%, 10%, 12%, 10%

seq-read seq-write rand-read rand-write
0

2

4

6

8

10

12

14

IOPS

Latency

Asias He, Red Hat Inc.11

Bio-based virtio-blk: Performance evaluation 3

● 3) On Normal SATA device (fio test 8 vcpu, direct = 1)

 IOPS boost : -10%, -10%, 4.4%, 0.5%

 Latency improvement : -12%, -15%, 2.5%, 0.8%

seq-read seq-write rand-read rand-write

-20

-15

-10

-5

0

5

10

IOPS

Latency

Asias He, Red Hat Inc.12

 Bio-based virtio-blk: How to use

● In mainline kernel already
● Merged in v3.7 merge window

● No changes in host side are needed

● kernel module parameter to turn on/off bio-base path
● Add 'virtio_blk.use_bio=1' to kernel cmdline
● modprobe virtio_blk use_bio=1
● Disabled by default

Asias He, Red Hat Inc.13

Bio-based virtio-blk: Limitations

● Doesn't help with slow device on seq read/write
● Merge is very helpful for spin disks

● Guest+Host scheduling make the merge more aggressive

● Merge in guest reduces the total number of request to
host and reduces number of VMexit

● The benefit of scheduling is larger than bio path gives
● Features provided by I/O Schedule is not available

● e.g. CFQ based blkio (Proportional BW Limit)
● Block layer based blkio (Max BW Limit) works

Asias He, Red Hat Inc.14

Bio-based virtio-blk: Future work

● Make it a feature bit in virtio-blk
● Host can set the feature on/off
● No need to configure inside the guest

● Make the decision of using bio-base I/O path or not
automatically

● Detect the underlay device
● Choose the best I/O path
● Zero configuration in both side

Asias He, Red Hat Inc.15

Vhost-blk: Overview

 Host side virtio-blk implementations
● 1) QEMU current

● QEMU global mutex: only one thread can submit I/O

● In AIO case, io_submit() is under the global mutex

● 2) QEMU data-plane (prototype)
● Developed by Stefan Hajnoczi

● 1) Each virtio-blk device has a thread dedicated to handle request

● 2) Requests are processed without going through the QEMU block layer using Linux
AIO directly.

● 3) Completion interrupts are injected via ioctl from the dedicated thread.

● 3) LKVM (aka kvm tool)
● Using data-plane similar architecture from the very beginning

● 4) Vhost-blk (prototype)
● vhost-blk is an in-kernel virtio-blk device accelerator, similar to vhost-net

Asias He, Red Hat Inc.16

vda

virtio-blk

vhost
Vhost-blk

virito req -> bio

Generic Block Layer

IO Scheduler

Hardware Disks

Block Device Driver

vring

Host Kernel

Guest

Vhost-blk: Architecture

ioeventfd irqfd

Asias He, Red Hat Inc.17

Vhost-blk: Implementation

● Using vhost infrastructure

● Send request

● vhost-<pid> kernel thread to send request

● created by vhost infrastructure
● Convert guest's virtio-blk requests to bio

● get_user_pages_fast() to convert iov based request to page
● bio_add_page() to prepare the bio
● set bio->bi_end_io = vhost_blk_req_done as bio completion callback

● Use submit_bio() to submit the bio to host kernel block layer

● Complete request

● vhost-blk-<pid> kernel thread to complete request

● Do request and complete in parallel
● Uses irqfd to inject interrupt to guest

Asias He, Red Hat Inc.18

Vhost-blk: Performance evaluation 1

● LKVM-userspace v.s LKVM-vhost-blk

 Fio with libaio ioengine on Fusion IO device using LKVM

seq-read seq-write rnd-read rnd-write
0

50

100

150

200

250

LKVM-userspace

LKVM-vhost-blk

Native

IOPS(K) userspace vhost-blk Improvement Native

seq-read 107 121 +13.0% 127

seq-write 130 179 +37.6% 196

rnd-read 102 122 +19.6% 122

rnd-write 125 159 +27.0% 175

Asias He, Red Hat Inc.19

Vhost-blk: Performance evaluation 2

● QEMU-userspace v.s QEMU-vhost-blk

 Fio with libaio ioengine on Fusion IO device using QEMU

seq-read seq-write rnd-read rnd-write
0

50

100

150

200

250

QEMU-userspace

QEMU-vhost-blk

Native

IOPS(K) userspace vhost-blk Improvement Native

seq-read 76 123 +61.0% 127

seq-write 139 173 +24.4% 196

rnd-read 73 120 +64.3% 122

rnd-write 75 156 +108.0% 175

Asias He, Red Hat Inc.20

rand-read rand-write
0

20

40

60

80

100

120

140

160

63.8 63.7

145.8 145.8

IOPS (K)
fio test on 8 ramdisk based device with 4KB rand read and wrtie

QEMU-userspace

QEMU-vhost-blk

Vhost-blk: Performance evaluation 3

2.285x

● QEMU-userspace v.s QEMU-vhost-blk

2.288x

Asias He, Red Hat Inc.21

Vhost-blk: Performance evaluation 4

rand-read rand-write
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
16761.56

15316.45

6981.79 6974.55

Latency(usec)
fio test on 8 ramdisk based device with 4KB rand read and wrtie

QEMU-userspace

QEMU-vhost-blk

2.400x

● QEMU-userspace v.s QEMU-vhost-blk● QEMU-userspace v.s QEMU-vhost-blk

2.196x

Asias He, Red Hat Inc.22

Vhost-blk: Why

● No QEMU userspace, No QEMU global mutex

● Code path is shorter
● Guest talks to host kernel directly
● Host kernel BIO interface

● Save a bunch of system calls
● epoll_wait() & read(): wait for the eventfd which guest notifies us

● io_submit(): submit the aio

● read(): read the aio complete eventfd

● io_getevents(): reap the aio complete result

● ioctl(): trigger the interrupt

● Benefits to all KVM implementation
● e.g. Both QEMU and LKVM

Asias He, Red Hat Inc.23

Vhost-blk: How to use

● Source Code
● KERNEL

● git@github.com:asias/linux.git blk.vhost-blk

● LKVM
● git@github.com:asias/linux-kvm.git blk.vhost-blk

● QEMU
● git@github.com:asias/qemu.git blk.vhost-blk

● Cmdline
$ sudo modprobe vhost-blk
$ sudo lkvm run -d /dev/sdb,vhost
$ sudo qemu -drive \
 file=/dev/sdb,if=virtio,cache=none,aio=native,vhost=on

Asias He, Red Hat Inc.24

Vhost-blk: Limitations & Future work

● Only support raw image format
● No other image format support, e.g. Qcow2

● No file based image support currently
● Lack of proper in-kernel aio interface

● bio interface is used in current version
● Raw block device only
● /dev/sda, /dev/VolGroup/LogicalVolume

● Once the work-in-progress in-kernel aio interface goes
to mainline (Zach Brown and Dave Kleikamp)

● it's easy to support raw file based image

● No migration support

Asias He, Red Hat Inc.25

Future work

● Multiqueue virtio-blk support
● Jens' multiqueue linux block layer <-> multiqueue virtio

● More performance test and analysis
● Different storage configurations / workload

Asias He, Red Hat Inc.26

Thanks for listening!

Comments / Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

