
Asias  He, Red Hat Inc.1

Virtio-blk Performance Improvement

Asias He <asias@redhat.com>, Red Hat
Nov 8, 2012, Barcelona, Spain
KVM FORUM 2012  

mailto:asias@redhat.com


Asias  He, Red Hat Inc.2

Storage transport choices in KVM 

● Full virtualization : IDE, SATA, SCSI
● Good guest compatibility
● Lots of trap-and-emulate, bad performance

● Para virtualization: virtio-blk, virtio-scsi 
● Virtio ring buffer provides efficient transport for guest-host 

communication
● Provide more virtualization friendly interface, higher 

performance

● Device assignment
● Pass hardware to guest, high-end usage, high performance 
● Exclusive access, limited number of slot in a server, hard to 

do live migration
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Why improve virtio-blk

● I/O intensive applications
● Need high storage performance

● Virtio-blk
● Simple, Just simple read/write/flush command, no scsi 

overhead, Fast SSD ->  PCIE interface instead of SCSI 
or SATA interface

● Available for a while, benefits existing users
● virtio-blk is about ~3 times faster than virtio-scsi in my 

setup

● virtio-scsi
● Rich features: True scsi device, Thousands of disks per 

virtio-scsi device, Effective SCSI passthrough
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Lifecycle of a I/O request in virtio-blk 
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How to improve virtio-blk performance  
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Bio-based virtio-blk: What is it (1/2) 

● Two types of block device dirvers
● struct request based

● Takes the advantages of I/O scheduler
●  Most drivers

● struct bio based
● Skips the I/O scheduler
● Few drivers, e.g. Ramdisk driver
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Bio-based virtio-blk: What is it (2/2)

● Vrito-blk block device driver
● Reqeust-based virtio-blk (original)

● Bio-based virtio-blk (new)
● Adds bio based I/O path to virtio-blk
● Shorten the I/O path in Guest
● Less lock contention (q->queue_lock), lower cpu utilization
● Higher IOPS
● Lower Latency

Do we really need the I/O scheduling twice in both 
guest and host? (esp. with high speed SSD device) 
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generic_make_request()

Bio-based virtio-blk: Architecture
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Bio-based virtio-blk: Performance evaluation 1

● 1) On Ramdisk device (fio test 8 vcpu, direct = 1)

     IOPS boost           : 28%, 24%, 21%, 16%

     Latency improvement : 32%, 17%, 21%, 16%
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Bio-based virtio-blk: Performance evaluation 2

● 2) On Fusion-io device (fio test 8 vcpu, direct = 1)

     IOPS boost          : 11%, 11%, 13%, 10%

     Latency improvement : 10%, 10%, 12%, 10%
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Bio-based virtio-blk: Performance evaluation 3

● 3) On Normal SATA device (fio test 8 vcpu, direct = 1)

     IOPS boost             : -10%, -10%, 4.4%, 0.5%

     Latency improvement : -12%, -15%, 2.5%, 0.8%
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 Bio-based virtio-blk: How to use

● In mainline kernel already
● Merged in v3.7 merge window

● No changes in host side are needed

● kernel module parameter to turn on/off bio-base path
● Add 'virtio_blk.use_bio=1' to kernel cmdline 
● modprobe virtio_blk  use_bio=1
● Disabled by default
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Bio-based virtio-blk: Limitations

● Doesn't help with slow device on seq read/write
● Merge is very helpful for spin disks 

● Guest+Host scheduling make the merge more aggressive

● Merge in guest reduces the total number of request to 
host and reduces number of VMexit

● The benefit of scheduling is larger than bio path gives
● Features provided by I/O Schedule is not available

● e.g. CFQ based blkio (Proportional BW Limit)
● Block layer based blkio (Max BW Limit) works
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Bio-based virtio-blk: Future work

● Make it a feature bit in virtio-blk
● Host can set the feature on/off
● No need to configure inside the guest

● Make the decision of using bio-base I/O path or not 
automatically

● Detect the underlay device
● Choose the best I/O path
● Zero configuration in both side
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Vhost-blk: Overview

 Host side virtio-blk implementations
● 1) QEMU current

● QEMU global mutex: only one thread can submit I/O

● In AIO case, io_submit() is under the global mutex

● 2) QEMU data-plane (prototype)
● Developed by Stefan Hajnoczi

● 1) Each virtio-blk device has a thread dedicated to handle request 

● 2) Requests are processed without going through the QEMU block layer using  Linux 
AIO directly. 

● 3) Completion interrupts are injected via ioctl from the dedicated thread.

● 3) LKVM (aka kvm tool)
● Using data-plane similar architecture from the very beginning

● 4) Vhost-blk (prototype)
● vhost-blk is an in-kernel virtio-blk device accelerator, similar to vhost-net
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Vhost-blk: Implementation

● Using vhost infrastructure

● Send request

● vhost-<pid> kernel thread to send request

● created by vhost infrastructure
● Convert guest's virtio-blk requests to bio

● get_user_pages_fast() to convert iov based request to page
● bio_add_page() to prepare the bio
● set bio->bi_end_io = vhost_blk_req_done as bio completion callback

● Use submit_bio() to submit the bio to host kernel block layer

● Complete request

● vhost-blk-<pid> kernel thread to complete request

● Do request and complete in parallel    
● Uses irqfd to inject interrupt to guest
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Vhost-blk: Performance evaluation 1

● LKVM-userspace v.s LKVM-vhost-blk 

        Fio with libaio ioengine on Fusion IO device using LKVM
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Vhost-blk: Performance evaluation 2

● QEMU-userspace v.s QEMU-vhost-blk

       Fio with libaio ioengine on Fusion IO device using QEMU
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Vhost-blk: Performance evaluation 3

2.285x

● QEMU-userspace v.s QEMU-vhost-blk
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Vhost-blk: Performance evaluation 4
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Vhost-blk: Why

● No QEMU userspace, No QEMU global mutex

● Code path is shorter
● Guest talks to host kernel directly
● Host kernel BIO interface

● Save a bunch of system calls
● epoll_wait() & read(): wait for the eventfd which guest notifies us

● io_submit(): submit the aio

● read(): read the aio complete eventfd

● io_getevents(): reap the aio complete result

● ioctl(): trigger the interrupt 

● Benefits to all KVM implementation
●  e.g. Both QEMU and LKVM
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Vhost-blk: How to use

● Source Code  
● KERNEL

●  git@github.com:asias/linux.git blk.vhost-blk

● LKVM 
● git@github.com:asias/linux-kvm.git blk.vhost-blk

● QEMU 
● git@github.com:asias/qemu.git blk.vhost-blk

● Cmdline
$ sudo modprobe vhost-blk
$ sudo lkvm run -d /dev/sdb,vhost 
$ sudo qemu -drive \
   file=/dev/sdb,if=virtio,cache=none,aio=native,vhost=on
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Vhost-blk: Limitations & Future work

● Only support raw image format
● No other image format support, e.g. Qcow2

● No file based image support currently
● Lack of proper in-kernel aio interface

● bio interface is used in current version
● Raw block device only 
● /dev/sda, /dev/VolGroup/LogicalVolume

● Once the work-in-progress in-kernel aio interface goes 
to mainline (Zach Brown and Dave Kleikamp)

● it's easy to support raw file based image

● No migration support
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Future work

● Multiqueue virtio-blk support
● Jens' multiqueue linux block layer <-> multiqueue virtio

● More performance test and analysis
● Different storage configurations / workload
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Thanks for listening!

Comments / Questions ?
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