
Hollis Blanchard, IBM Linux Technology Center
KVM Forum
29 Aug 2007

KVM for Embedded PowerPC



PowerPC Architecture

Embedded Systems

Virtualizing PowerPC Book E

Overview



PowerPC Architecture



PowerPC in General

64-bit architecture with 32-bit implementations

RISCish

Load/store architecture

32 general-purpose registers

PowerPC cores developed by IBM, Freescale, AMCC, PA 
Semiconductor, Sony/Toshiba/IBM

A single core may be packaged into many systems-on-a-chip 
(SoC)
– E.g. 440 core in 440GP, 440EP, 440SP, 440SPE, 440GX, ...

– Each has different on-chip IO devices, often at different physical 
addresses

– Some have an FPU, some don't.



PowerPC Architecture Evolution

Time

Classic

Embedded “Book E”

Server (64-bit)

850
405

440
e500

604
750

970 (“G5”)
POWER67400 (“G4”) Cell BE



Server PowerPC Architecture

MMU
– Hardware-walked hash table

• Large contiguous block of memory

– Real mode (MMU disabled)

– Segmentation differentiates address spaces

 Interrupt handlers at fixed addresses near 0 (e.g. 0x500)

Hypervisor support in hardware
– Additional privilege level, hypercall instruction, etc

Almost all systems using server PowerPC already ship with a 
hypervisor



Book E PowerPC Architecture

MMU
– Software-controlled TLB

• On-chip array; no hardware pagetable walker

• Small number of simultaneous translations, e.g. 64 entries

– No real mode
• Software must ensure interrupt handlers are always mapped

– PID register differentiates address spaces

Programmable interrupt handler addresses

Sophisticated cache control and locking

No hypervisor support



Embedded Systems

“Embedded system” means dedicated-purpose
– Not necessarily slow or low-power

PowerPC is popular in relatively high-performance embedded 
applications
– Routers, RAID controllers, game consoles, ...

SoC means a core plus integrated IO
– IO includes SDRAM controller, UART, Ethernet, I2C, USB, ...

Embedded PowerPC can be found as bare cores (add your 
own northbridge) and as SoCs
– Freescale's e600 core in both 8641 SoC and 7448 processor

– AMCC 440 core is found in 440GP, 440GX, 440SP, 440EP, ...

– IBM sells custom SoCs: mix-and-match cores and IO blocks



Why Virtualization for Embedded Systems?

Lots of reasons – more than possible to list here

Legacy supervisor-level software
– Proprietary 3rd-party operating systems, homebrew kernels

– Exploit multi-core chips with single-core software stacks

Workload consolidation (e.g. device control + UI)

Protect intrusion detection services

Uniprocessor software on multicore processors

Sandbox untrusted code (e.g. game consoles)

Reliable remote kernel upgrades

RTOS + Linux

 Improve reliability through isolation of privileged code



Why KVM for Embedded PowerPC?

Linux's pre-existing support for the diversity in embedded 
PowerPC
– Linux core support: 405, 440, 850, 604, 750, 970, e500, e300, e600, 

Cell, 1682M, ...

– Architecture families: Classic, Book E, Server

What Linux code can we reuse?
– Bootstrap support (firmware handoff)

– MMU support

– PIC drivers

– scheduler (with real-time support)

– memory allocator



Virtualizing PowerPC Book E

 Instruction virtualization

Memory virtualization

Performance implications

KVM interface



Instruction Virtualization

No hypervisor mode in hardware; only user and supervisor 
privilege levels
– To enforce isolation, guest kernels run in user mode

All supervisor instructions executed in user mode trap to the 
host

Host can decode and emulate the instructions
– Full virtualization

Unfortunately, there are a lot of privileged instructions executed 
by every interrupt handler
– Performance of interrupt-heavy workloads will suffer

However, user mode instructions execute natively
– Performance of compute-bound workloads should be decent



Data TLB Miss Fast Path
mtspr SPRN_SPRG0, r10
mtspr SPRN_SPRG1, r11
mtspr SPRN_SPRG4W, r12
mtspr SPRN_SPRG5W, r13
mfcr r11
mtspr SPRN_SPRG7W, r11
mfspr r10, SPRN_DEAR
lis r11, TASK_SIZE@h
cmplw r10, r11
blt+ 3f
lis r11, swapper_pg_dir@h
ori r11, r11, swapper_pg_dir@l
mfspr r12,SPRN_MMUCR
rlwinm r12,r12,0,0,23
b 4f

3: mfspr r11,SPRN_SPRG3
lwz r11,PGDIR(r11)
mfspr r12,SPRN_MMUCR
mfspr r13,SPRN_PID
rlwimi r12,r13,0,24,31

4: mtspr SPRN_MMUCR,r12
rlwinm r12, r10, 13, 19, 29
lwzx r11, r12, r11
rlwinm. r12, r11, 0, 0, 20
beq 2f
rlwimi r12, r10, 23, 20, 28
lwz r11, 4(r12)
andi. r13, r11, _PAGE_PRESENT
beq 2f
ori r11, r11, _PAGE_ACCESSED
stw r11, 4(r12)
lis r13, tlb_44x_index@ha
lwz r13, tlb_44x_index@l(r13)

lis r11, tlb_44x_hwater@ha
lwz r11, tlb_44x_hwater@l(r11)
addi r13, r13, 1
cmpw 0, r13, r11
ble 7f
li r13, 0

7: lis r11, tlb_44x_index@ha
stw r13, tlb_44x_index@l(r11)
lwz r11, 0(r12)
lwz r12, 4(r12)
rlwimi r11, r12, 0, 0 , 19
tlbwe r11, r13, PPC44x_TLB_XLAT
li r11, PPC44x_TLB_VALID | PPC44x_TLB_4K
rlwimi r10, r11, 0, 20, 31
tlbwe r10, r13, PPC44x_TLB_PAGEID
li r10, PPC44x_TLB_SR@l
rlwimi r10, r12, 0, 30, 30
rlwimi r10, r12, 29, 29, 29
rlwimi r10, r12, 29, 28, 28
rlwimi r11, r12, 31, 26, 26
and r11, r12, r11
rlwimi r10, r11, 0, 26, 26
rlwimi r12, r10, 0, 26, 31
rlwinm r12, r12, 0, 20, 15
tlbwe r12, r13, PPC44x_TLB_ATTRIB
mfspr r11, SPRN_SPRG7R
mtcr r11
mfspr r13, SPRN_SPRG5R
mfspr r12, SPRN_SPRG4R
mfspr r11, SPRN_SPRG1
mfspr r10, SPRN_SPRG0
rfi



Book E Address Spaces

effective addressPID

MSR[AS]

32b

32b8b1b 41b

virtual address

36b

real address

TLB



PowerPC 440 MMU

63

:

1

0

Fully associative software-managed 64-entry TLB

Variable page sizes (1KB – 1GB)

36-bit physical addresses



Book E Address Spaces

PID 1PID 1 PID 2 ... PID 255 PID 1PID 1 PID 2 ... PID 255

PID 0PID 0

PID 0 matches entire AS

255 areas (4GB each) per AS

AS 0 AS 1



Address Space Virtualization

kernel

PID 1 PID 7

AS 0 AS 1 AS 0

trampoline guest

PID 17
PID 1

AS 1
plain Linux KVM



TLB Virtualization

GPA

:

IO GPA

GPA

guest TLB

HPA

:

trampoline

shadow TLB

HPA

:

IO HPA

HPA

host TLB

hardware TLB

tlbre

tlbwe



Performance Loss Mitigations

Unmodified guests: rewrite instruction stream
– Guest access to many SPRs do not require host processing

– Could rewrite “mtspr” instructions to store to a per-vcpu memory 
mapping

– All PowerPC instructions are 32 bits wide

– Branch instructions are relative, and have +/- 8MB range
• If we need to insert more than one instruction, things start to get hairy

Modified guests
– Don't abstract TLB entries; abstract the whole MMU

– Virtual IO device drivers



KVM Kernel/Userspace Interface

struct kvm_vcpu defined per architecture
– Shared KVM code treats as an opaque pointer

Userspace still needs some PowerPC knowledge
– qemu, libkvm, etc

What is the completely common layer?
– virt-manager? Higher?

Expliticly sized types
– “long” changes size between 32- and 64-bit ABIs

Endianness
– Casting to char* should be a warning flag

Bit fields
– Not portable! No.



KVM Guest/Host Interface

Explicitly sized types, endianness, bitfields, etc

Do not pass virtual addresses!
– Infeasible or impossible to translate virtual -> physical on some 

architectures

Atomic operations only on architecture-defined types
– 32-bit PowerPC atomic operations have 4-byte granularity

– E.g. shared “pending interrupts” bitfield



Current Status

Prototyping only

Can execute ~50 Linux early boot instructions

Low-level code only; not sharing any KVM code today
– x86 code mixed with generic code

– KVM ioctl interface is x86-only

No qemu interaction yet
– Just a simple loader



Summary

Virtualization is becoming very important to embedded 
applications.
– Embedded applications bring unique requirements.

Embedded PowerPC is a clean architecture but lacks hardware 
virtualization support.

Virtualizing embedded PowerPC presents some interesting 
technical challenges.


