Linux Storage Stack for the Cloud

Oct 2013

Yeela Kaplan
Software Engineer
Cloud Storage Team
Red Hat
Who am I
Agenda

- Storage virtualization – Why, What and How?
- Challenges & Solutions in the enterprise
- oVirt Design and Implementation
- Q&A
Why storage virtualization?

- Limited physical disk interfaces
- Fixed size
- Can’t join disks
 - Performance
 - Storage array limitations
 - Multiple arrays
Storage virtualization

Create virtual devices with disk behavior

- Partition table
- Storage arrays
- LVM
Storage with benefits

- Space flexibility
- Create devices ‘on the fly’
- Snapshots
A virtual disk for a vm

- One image is worth many volumes
- Volume:
 - YABS – Yet Another Block Sequence
- Volume types:
 - File
 - Block
What is the problem?
Enterprise storage needs

Multiple **data centers**

 x

hundreds of **hosts**

 x

hundreds of **VMs**

 x

multiple **disks**

 x

potentially dozens of **snapshots**

=

VERY BIG HEADACHE
Storage challenges

- Host independent VMs
- Quantity of volumes
- Size of storage
Host independent VMs

KVM Forum, Oct 2013
Solutions

- **Host independent VMs**
 - Shared storage

- **Quantity**
 - Creation on the fly
 - Templates
 - Centralized DB

- **Size**
 - Over-commitment
 - Thin provisioning
 - Templates (Shared data, same OS)
oVirt Implementation
oVirt snapshot

- Use *qcow2*
- file and block volumes
- provides COW volumes
- Thin volumes
File
File volumes

- **Quantity**
 - create and manage files using the file system
 - “Unlimited”

- **Size**
 - Dynamic sizing
 - Sparse files

- **Shared storage**
 - NAS
 - Synchronizing access
Block
Block volumes

- **Quantity**
 - How do we create a block device?
 - How many block devices are supported?

- **Size**
 - How can we resize a block volume?
 - Is thin provisioning possible?

- **Shared storage**
Using remote storage. But...

- Different storage vendors, models
- No standard interface

Why Block?

- File system performance overhead
- Customer requirements
Using SAN

- Initiator, Target, LUN = GUID

- **Transport** for the SCSI commands
 - FC
 - iSCSI

- **Redundancy**
 - Multiple targets for the same LUN
 - How can we tell if it’s the same LUN?
Redundancy and Multipath

• **Using Multipath**
 - Query the storage to obtain the GUID
 - A new GUID is mapped through `device-mapper`
 - Use rules to choose the preferred path for the device

• Fail fast
• Pause VM
• I/O failure never reaches guest OS
• Auto resume
Why device-mapper?

- mapping block devices onto virtual block devices
- Used by multiple Linux storage stack components
- Multipath, RAID, LVM, crypt, etc...
Creating and managing block images

- LVM provides a unified interface
- Volume is implemented as an LV
- Easy provisioning: `lvcreate`, `lvremove`
- Thin provisioning: `lvextend`

* http://www.markus-gattol.name/ws/lvm.html
Very specialized use of LVM
Thin provisioning

- No use of LVM native thin provisioning
- LV initial size – 1GB
- Extend LV when:
 - VM paused due to ENOSPC
 - High watermark (monitoring qemu) identified
Need a clustered solution

- create, remove, extend are VG MD writes
- Simultaneous writes will cause MD corruption
- cLVM did not scale
- No synchronization mechanisms
LVM configuration

- **Hybrid mode and compartmentalization**
 - Runtime config, separate for vdsm
 - to avoid affecting anything else on the host
 - Allow admin to make changes outside of vdsm
 - LVM short filters
 - Speed up operations (by default LVM scans all devices)
 - Compartmentalize problems
 - Avoid accessing host ‘owned’ devices

- **Activate / deactivate**
 - Keep number of devices lower
 - Avoid refresh
Clustering LVM

- LVM MDA per PV by default
 - Problems
 - In clustered environment with more than 1 PV will cause corruption
 - Requires update of multiple areas to commit transaction
 - Solution
 - only 1 active MDA
 - oVirt MD as LV and VG tags
 - Lock type 4 (patches upstream)
• Storage Pool Manager
• A role assigned to one host
• Can be migrated to any host in a data center
• Creation, deletion and manipulation of volumes
• Single meta data writer
SPM algorithm

- Cluster membership based on
 - Light-weight leases for storage-centric coordination (Chockler and Malkhi 2004)
- Single recoverable leader
- Primitives: lease and renew
- Uniform
- Simple and efficient
SANLock

- Cluster membership, like SPM, based on
 - Light-weight leases for storage-centric coordination (Chockler and Malkhi 2004)
- Leases based on
 - Disk Paxos (modified for leases)
Summary

- Storage virtualization
- oVirt implementation
- oVirt snapshot
- File implementation
- Block implementation
- Multipath
- Device-mapper
- LVM
- SPM
THANK YOU!

http://www.ovirt.org/Home
engine-devel@ovirt.org
vdsm-devel@lists.fedorahosted.org

#ovirt irc.oftc.net

ykaplan@redhat.com