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LHP (Lock Holder Preemption)

• More obvious in virtualization

– vCPU scheduling 

– Task preemption

• Then

– Potentially blocking the progress of other vCPUs waiting to 

acquire the same lock

– Increasing synchronization latency 

– Performance degradation
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LHP (Lock Holder Preemption)

• How to solve or alleviate?

– PLE (Pause Loop Exiting)

– DLHS (Delay LH scheduling)

– Co-scheduling

– Balance scheduling
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PLE

• Hardware support

– VMCS configuration

• Optimization for Lock Waiters

– VM Exit actively

– Avoid waste vCPU cycles for invalid spin

• Pros. 

– Supported by upstream

• Cons.

– Setting appropriate values of ple_gap and ple_windows is 
difficult

• Workloads adjustment

– Find an appropriate vcpu to yield
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DLHS (Delay Lock Holder Scheduling)

• Background & precondition

– Usually, lock holders are under interrupt disable contexts

– Normally, the period of holding lock is shortly

– Hardware support (e.g. intel VT-X)

• interrupt window exiting 

– Software support 

• Hrtimer, …
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DLHS (Delay Lock Holder Scheduling)

• Solution
– Set a grace period for LH before scheduling

– If one vCPU is LH 
• Start one hrtimer, and

• Set interrupt window exiting for VMCS

• If the hrtimer expire
– Clear interrupt window 

– Continue to schedule for vCPU

– Judge the vCPU release the lock
• PLE happened

• Interrupt window exiting happen

• then
– Cancel hrtimer

– Release grace period

– Schedule the vCPU immediately
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Co-scheduling & Balance scheduling
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Co-scheduling

• CPU fragmentation 

– Reduces CPU utilization

– Delay vCPU execution

• Priority inversion

– Degrades I/O performance

xxx vCPU0 xxx vCPU0

vCPU1 vCPU1I/O

T0 T1 T2 T3 T4

pCPU 0

pCPU 1
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Balance scheduling

• Balances vCPU siblings on pCPUs

– without precisely scheduling the vCPUs simultaneously

• How to?

– Uses a bitmap to record all used pCPUs for VM

– Scheduler adjustment
• Enqueue & dequeue

• Migration/find_idle_cpu/select_task_rq etc.
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Performance evaluation

• Workload:

– Pushserver in Huawei Private Cloud

– Continuous testing for 24 hours

• Results

with balance sched
without balance
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RTC on KVM

• Windows use RTC as clock event device 

• RTC emulation in Qemu, three timers

– rtc_periodic_timer
• Generates periodic interrupts

• Programmable to occur according to interrupt rate

– rtc_update_timer
• Generates alarm interrupts

• Occur one per second to once per day

– rtc_coalesced_timer
• Generates compensation interrupts

• Slews the lost ticks since different reasons

• Getting worse and worse with the VM density increase

• Pain points
– Some operations need to hold BQL

– Context switching between user space and kernel space

– Interrupt injecting from user space

– Performance degradation
• Latency increase

• Windows guest density decrease
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RTC optimizations on KVM

• Minimize influence of BQL 
– Placing RTC memory region outside BQL

• Using irqfd inject interrupts

• Hyperv features
– hyperv clock, …

– Decreases read/write ioports

• Decreases ioport access on 0x70/0x71

• Move RTC emulation to hypervisor
– Inject interrupts in KVM

– Reduce context switching

– But
• Large attack surface

• Incompatible with new features, such as split irqchip

• Optimize RTC compensation solution



18

RTC compensation solution

• Slew RTC ticks in hypervisor directly

• Count the coalesced interrupts
– When an RTC interrupt injecting failed

– Adjust the count when RTC interrupt rate changes

• Inject coalesced interrupts after EOI handler if exist
– Don’t need a separate timer

– More timely

– Throttle the speed if there is too many coalesced interrupts 

• Live migration support
– Save the coalesced interrupts in src side

– Restore them in dest side

– Both KVM and Qemu need to be patched
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Optimization evaluation

Before

optimization

After

optimization



Thank You!


