
Performance Optimization on 

Huawei Public and Private Cloud

Jinsong Liu <liu.jinsong@huawei.com>

Lei Gong <arei.gonglei@huawei.com>



2

Agenda

• Optimization for LHP

• Balance scheduling

• RTC optimization



3

Agenda

• Optimization for LHP

• Balance scheduling

• RTC optimization



4

LHP (Lock Holder Preemption)

• More obvious in virtualization

– vCPU scheduling 

– Task preemption

• Then

– Potentially blocking the progress of other vCPUs waiting to 

acquire the same lock

– Increasing synchronization latency 

– Performance degradation



5

LHP (Lock Holder Preemption)

• How to solve or alleviate?

– PLE (Pause Loop Exiting)

– DLHS (Delay LH scheduling)

– Co-scheduling

– Balance scheduling



6

PLE

• Hardware support

– VMCS configuration

• Optimization for Lock Waiters

– VM Exit actively

– Avoid waste vCPU cycles for invalid spin

• Pros. 

– Supported by upstream

• Cons.

– Setting appropriate values of ple_gap and ple_windows is 
difficult

• Workloads adjustment

– Find an appropriate vcpu to yield



7

DLHS (Delay Lock Holder Scheduling)

• Background & precondition

– Usually, lock holders are under interrupt disable contexts

– Normally, the period of holding lock is shortly

– Hardware support (e.g. intel VT-X)

• interrupt window exiting 

– Software support 

• Hrtimer, …



8

DLHS (Delay Lock Holder Scheduling)

• Solution
– Set a grace period for LH before scheduling

– If one vCPU is LH 
• Start one hrtimer, and

• Set interrupt window exiting for VMCS

• If the hrtimer expire
– Clear interrupt window 

– Continue to schedule for vCPU

– Judge the vCPU release the lock
• PLE happened

• Interrupt window exiting happen

• then
– Cancel hrtimer

– Release grace period

– Schedule the vCPU immediately



9

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U
n

it
: s

e
c 

 L
o

w
e

r 
is

 b
e

tt
e

r

Hackbench results（CPU overcommit 1:3）

VM1-patched

VM2-patched

VM3-patched

VM1

VM2

VM3

DLHS – performance



10

Agenda

• Optimization for LHP

• Balance scheduling

• RTC optimization



11

Co-scheduling & Balance scheduling

Guest

vCPU vCPU vCPU

pCPU pCPU pCPUTi
m

e
 X

Co-scheduling Balance-scheduling

Guest

vCPU vCPU vCPU

pCPU pCPU pCPU

Disperse all vCPUs AMASRun all vCPUs on Time x



12

Co-scheduling

• CPU fragmentation 

– Reduces CPU utilization

– Delay vCPU execution

• Priority inversion

– Degrades I/O performance

xxx vCPU0 xxx vCPU0

vCPU1 vCPU1I/O

T0 T1 T2 T3 T4

pCPU 0

pCPU 1



13

Balance scheduling

• Balances vCPU siblings on pCPUs

– without precisely scheduling the vCPUs simultaneously

• How to?

– Uses a bitmap to record all used pCPUs for VM

– Scheduler adjustment
• Enqueue & dequeue

• Migration/find_idle_cpu/select_task_rq etc.



14

Performance evaluation

• Workload:

– Pushserver in Huawei Private Cloud

– Continuous testing for 24 hours

• Results

with balance sched
without balance

sched
1:1 vcpupin

<10ms 93.50% 70% 95.30%

93.50%

70%

95.30%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
ro

p
o

rt
io

n
 o

f 
b

u
ild

in
g 

ch
ai

n
s 

Proportion of building chains (higher is better)



15

Agenda

• Optimization for LHP

• Balance scheduling

• RTC optimization



16

RTC on KVM

• Windows use RTC as clock event device 

• RTC emulation in Qemu, three timers

– rtc_periodic_timer
• Generates periodic interrupts

• Programmable to occur according to interrupt rate

– rtc_update_timer
• Generates alarm interrupts

• Occur one per second to once per day

– rtc_coalesced_timer
• Generates compensation interrupts

• Slews the lost ticks since different reasons

• Getting worse and worse with the VM density increase

• Pain points
– Some operations need to hold BQL

– Context switching between user space and kernel space

– Interrupt injecting from user space

– Performance degradation
• Latency increase

• Windows guest density decrease



17

RTC optimizations on KVM

• Minimize influence of BQL 
– Placing RTC memory region outside BQL

• Using irqfd inject interrupts

• Hyperv features
– hyperv clock, …

– Decreases read/write ioports

• Decreases ioport access on 0x70/0x71

• Move RTC emulation to hypervisor
– Inject interrupts in KVM

– Reduce context switching

– But
• Large attack surface

• Incompatible with new features, such as split irqchip

• Optimize RTC compensation solution



18

RTC compensation solution

• Slew RTC ticks in hypervisor directly

• Count the coalesced interrupts
– When an RTC interrupt injecting failed

– Adjust the count when RTC interrupt rate changes

• Inject coalesced interrupts after EOI handler if exist
– Don’t need a separate timer

– More timely

– Throttle the speed if there is too many coalesced interrupts 

• Live migration support
– Save the coalesced interrupts in src side

– Restore them in dest side

– Both KVM and Qemu need to be patched



19

Optimization evaluation

Before

optimization

After

optimization



Thank You!


