
HIGH-PERFORMANCE
VMS

USING OPENSTACK NOVA
by Nikola Đipanov

$ WHOAMI

$ WHOAMI
Software engineer @ Red Hat
Working on OpenStack Nova since 2012
Nova core developer since 2013

THIS TALK

THIS TALK
OpenStack - the elastic cloud
High-perf requirements in the cloud
NUMA
Large pages
CPU pinning
IO devices
Challenge with exposing low level details in the cloud

OPENSTACK

OPENSTACK
Cloud infrastructure

Open-source (98.76% Python)

Multiple projects (compute, network, block storage, image
storage, messaging,)

Self-service user API and dashboard (*aaS)

OPENSTACK NOVA

OPENSTACK NOVA

THE NOVA "ELASTIC CLOUD" APPROACH

THE NOVA "ELASTIC CLOUD" APPROACH
Allow for quick provisioning of new (comodity) hardware

Additional cloud resources (handled by other components)
- VM images, block storage, networks...

Concept of flavors - combinations of VM resources (CPU,
RAM, disk...)

Simple scheduling - focus on scale

Users have no visibility into hardware

NOVA ARCHITECTURE

NOVA ARCHITECTURE

NOVA SCHEDULING (IN MORE DETAIL) 1/2

NOVA SCHEDULING (IN MORE DETAIL) 1/2
Flavor (admin controlled) has the basic information about

resources assigned to an instance

Limited policy can be overriden through image metadata
(mostly for OS/app related stuff)

Each compute host periodically exposes it's view of
resources to the scheduler

For each instance request scheduler running each set of
host resources through a set of filters

Considers only the ones that pass all filters (optionally in
particular order)

NOVA SCHEDULING (IN MORE DETAIL) 2/2

NOVA SCHEDULING (IN MORE DETAIL) 2/2
Default filters consider overcommit of CPU/RAM

(tunable)

Basic placement does not dictate how to use resources on
the host granularity

(apart from PCI devs, kind of special cased)

HIGH-PERF REQUIREMENTS - MOTIVATION

HIGH-PERF REQUIREMENTS - MOTIVATION
Allow for performance-sensitive apps to run in the cloud

Example use-case: Network Function Virtualization
Cloud instances with dedicated resources (a bit of an
oxymoron)
The key is to allow for low (or at least predictable)
latency

Better HW utilization on modern machines
Have a way to take into account NUMA effects on
moder hardware
Make this info available to the guest application/OS

HIGH-PERF REQUIREMENTS - THE CLOUD WAY

HIGH-PERF REQUIREMENTS - THE CLOUD WAY
Relying on users having knowledge about the hardware

they are running on - against the cloud paradigm

Need a way to allow users to request high-performance
features without the need to understand HW specifics

NUMA AWARENESS

NUMA AWARENESS
Modern HW increasingly providing NUMA

Benefits of IaaS controller being NUMA aware:
Memory bandwith & access latency
Cache efficiency

Some workloads can benefit from NUMA guarantees
too (especially combined with IO device pass-through)

Allow users to define a virtual NUMA topology
Make sure it maps to actual host topology

NUMA - LIBVIRT SUPPORT (HOST

NUMA - LIBVIRT SUPPORT (HOST
CAPABILITIES)

<capabilities>
 <host>
 <topology>
 <cells num="2">
 <cell id="0">
 <memory unit="KiB">4047764</memory>
 <pages unit="KiB" size="4">999141</pages>
 <pages unit="KiB" size="2048">25</pages>
 <distances>
 <sibling id="0" value="10">
 <sibling id="1" value="20">
 </sibling></sibling></distances>
 <cpus num="4">
 <cpu id="0" socket_id="0" core_id="0" siblings="0">
 <cpu id="1" socket_id="0" core_id="1" siblings="1">
 <cpu id="2" socket_id="0" core_id="2" siblings="2">
 <cpu id="3" socket_id="0" core_id="3" siblings="3">
 </cpu></cpu></cpu></cpu></cpus>

REQUESTING NUMA FOR AN OPENSTACK VM

REQUESTING NUMA FOR AN OPENSTACK VM
Set on the flavor (admin only)
Default - no NUMA awareness

Simple case:
hw:numa_nodes=2

Specifying more details:
hw:numa_cpu.0=0,1
hw:numa_cpu.1=2,3,4,5
hw:numa_mem.0=500
hw:numa_mem.1=1500

NUMA AWARENESS - IMPLEMENTATION

NUMA AWARENESS - IMPLEMENTATION
DETAILS

Compute host NUMA topology exposed to the
scheduler
Requested instance topology is persisted for the
instance (NO mapping to host cells)
Filter runs a placement algorithm for each host
Once on compute host - re-calculate the placement and
assign host<->instance node and persist it
Libvirt driver implements the requested policy

NB: Users cannot influence final host node placement - it's
decided by the fitting algo

NUMA LIBVIRT CONFIG - CPU PLACEMENT

NUMA LIBVIRT CONFIG - CPU PLACEMENT
<vcpu placement="static">6</vcpu>
<cputune>
 <vcpupin vcpu="0" cpuset="0­1">
 <vcpupin vcpu="1" cpuset="0­1">
 <vcpupin vcpu="2" cpuset="4­7">
 <vcpupin vcpu="3" cpuset="4­7">
 <vcpupin vcpu="4" cpuset="4­7">
 <vcpupin vcpu="5" cpuset="4­7">
 <emulatorpin cpuset="0­1,4­7">
</emulatorpin></vcpupin></vcpupin></vcpupin></vcpupin></vcpupin></vcpupin></cputune>

NUMA LIBVIRT CONFIG - MEMORY AND TOPO

NUMA LIBVIRT CONFIG - MEMORY AND TOPO
<memory>2048000</memory>
<numatune>
 <memory mode="strict" nodeset="0­1">
 <memnode cellid="0" mode="strict" nodeset="0">
 <memnode cellid="1" mode="strict" nodeset="1">
</memnode></memnode></memory></numatune>
<cpu>
 <numa>
 <cell id="0" cpus="0,1" memory="512000">
 <cell id="1" cpus="1,2,3,4" memory="1536000">
 </cell></cell></numa>
</cpu>

HUGE PAGES

HUGE PAGES
Modern architectures support several page sizes

Provide dedicated RAM to VM processes
Maximize TLB efficiency

HUGE PAGES - SOME CAVEATS

HUGE PAGES - SOME CAVEATS
Need to be set up on the host separately (outside of
scope of Nova)

This breaks the "commodity hardware, easily
deployable" promise a bit

VM RAM has to be a multiple of the page size
No possibility for overcommit

Also interferes with the cloud promise of better
utilization

REQUESTING HP FOR AN OPENSTACK VM

REQUESTING HP FOR AN OPENSTACK VM
Set on the flavor (admin only)
Default - no huge pages

hw:mem_page_size=large|small|any|2MB|1GB

HUGE PAGES - IMPLEMENTATION DETAILS

HUGE PAGES - IMPLEMENTATION DETAILS
Each compute host exposes data about it's huge pages
to the scheduler per NUMA node
Filters run the same placement algorithm as fro NUMA,
but now consider HP availability as well
Once on compute host - re-calculate the placement and
assign host<->instance node and persist it
Libvirt driver implements the requested policy

HUGE PAGES LIBVIRT CONFIG

HUGE PAGES LIBVIRT CONFIG
(Can be per node, but Nova does not allow that

granularity)

<memorybacking>
 <hugepages>
 <page size="2" unit="MiB" nodeset="0­1">
 <page size="1" unit="GiB" nodeset="2">
 </page></page></hugepages>
</memorybacking>

CPU PINNING

CPU PINNING
VM gets a dedicated CPUs for deterministic
performance
Improve performance of different workloads by
avoiding/preferring hyperthreads.

CPU PINNING - SOME CAVEATS

CPU PINNING - SOME CAVEATS
Requires a dedicated set of hosts (simple scheduling, no
automatic VM reconfiguration)

This breaks the "commodity hardware, easily
deployable" promise a bit too

No possibility for overcommit (by design of course)
Trades off maximizing utilization for performance of
specific workloads

REQUESTING HP FOR AN OPENSTACK VM

REQUESTING HP FOR AN OPENSTACK VM
Set on the flavor (admin only)
Default - no CPU pinning

hw:cpu_policy=shared|dedicated
hw:cpu_threads_policy=avoid|separate|isolate|prefer
proposed but not merged at this point

CPU PINNING - IMPLEMENTATION DETAILS

CPU PINNING - IMPLEMENTATION DETAILS
Compute nodes expose available CPUs per NUMA node
Filters run the same placement algorithm as for NUMA,
but now consider CPU availability
Flavors need to be set up to request for a specific set of
hosts (an aggregate) in addition to the CPU pinning
constraing
Everything else same as for NUMA/HP

CPU PINNING LIBVIRT CONFIG

CPU PINNING LIBVIRT CONFIG
(memory is handled the same as for NUMA/Huge pages if

requested)

<cputune>
 <vcpupin vcpu="0" cpuset="0">
 <vcpupin vcpu="1" cpuset="1">
 <vcpupin vcpu="2" cpuset="4">
 <vcpupin vcpu="3" cpuset="5">
 <vcpupin vcpu="4" cpuset="6">
 <vcpupin vcpu="5" cpuset="7">
 <emulatorpin cpuset="0­1,4­7">
</emulatorpin></vcpupin></vcpupin></vcpupin></vcpupin></vcpupin></vcpupin></cputune>

PCI PASS-THROUGH DEVICE LOCALITY

PCI PASS-THROUGH DEVICE LOCALITY
Pass-through of PCI devices (not developed as part of
this effort)
Make sure that PCI devices are local to the NUMA node
the VM is pinned to

PCI DEVICE LOCALITY - IMPLEMENTATION

PCI DEVICE LOCALITY - IMPLEMENTATION
DETAILS

Compute nodes expose the NUMA node device is local
too (libvirt has this info)
Make sure that NUMA placement algo also considers
requested PCI devices
Current limitation - no matching of devices to guest
nodes

HIGH PERF VMS IN OPENSTACK - THE GOOD

HIGH PERF VMS IN OPENSTACK - THE GOOD
PARTS

Enable a major open source cloud solution to be used by
a whole new class of users
Expands the ecosystem, fosters innovation...

CHALLENGE WITH EXPOSING LOW LEVEL

CHALLENGE WITH EXPOSING LOW LEVEL
DETAILS IN THE CLOUD

We cannot expose low level details to the user so the
API needs to hide them while still being useful
Complicates scheduling (SW) and hardware
management (Ops)
Nova specific challenges:

Not used by a big chunk of users - off by default
Internals (esp. scheduler) code not up to the
complexity needed for it to work properly

QUESTIONS?

QUESTIONS?

THANK YOU!

THANK YOU!

