VFIO: A user's perspective

Alex Williamson
alex.williamson@redhat.com
November 8th, 2012
What is VFIO?
What is VFIO?

- A new user level driver framework for Linux
- **Virtual Function I/O**
- Originally developed by Tom Lyon (Cisco)
- IOMMU-based DMA and interrupt isolation
- Full devices access (MMIO, I/O port, PCI config)
- Efficient interrupt mechanisms
- Modular IOMMU and device backends

* not limited to SR-IOV
What does this mean for QEMU?
What does this mean for Qemu?

• A new device assignment interface
 • Device assignment = userspace driver
 • Unbinds device assignment from KVM
 • Better security model
 • For both devices and users
• Device isolation
• Architecture portability
We already have KVM PCI device assignment
We already have KVM PCI device assignment

- pci-assign has problems
 - KVM is a hypervisor (not a device driver)
 - Resource access is incompatible with secure boot
 - IOMMU granularity is not assured
 - Poor device ownership model
 - x86 only
 - PCI only
 - KVM only
How does VFIO solve these problems?
KVM is not a device driver

- VFIO is a device driver
 - supports modular device driver backends
 - vfio-pci binds to non-bridge PCI devices
 - pci-stub available as “no access” driver
 - Allows admins to restrict access within a group
 - Users cannot attempt to use in-service host devices
 - Devices in use by users cannot be simultaneously claimed by other host drivers
Resource access is incompatible with secure boot

- VFIO device backends provide secure resource access
 - No device access without IOMMU isolation
 - Integral to the interface
 - Not outsourced to pci-sysfs
 - Virtualized access to PCI config space
IOMMU granularity is not assured

- VFIO uses IOMMU groups
 - Allows the IOMMU driver to define both visibility and containment
 - Solves devices hidden by bridges
 - IOMMU cannot differentiate devices behind PCI bridge
 - Solves peer-to-peer back channels
 - All transactions required to reach IOMMU for translation
 - For PCIe, ACS (Access Control Services) indicates support
- Result is better security
IOMMU Group examples
IOMMU Group examples

PCIe-to-PCI

PCI

PCI

Redirect

PCIe w/o ACS

PCIe w/o ACS

PCIe w/o ACS

PCIe w/ ACS

PCIe w/ ACS

Redirect

PCIe

PCIe
Poor device ownership model

- VFIO moves ownership to the group level
 - Access to device file grants ownership
 - Ownership extends to all devices within the group
 - All accesses through VFIO
x86 only, PCI only, KVM only

- VFIO supports a modular IOMMU interface
 - IOMMU API (type1) implemented
 - POWER (SPAPR) under development
- VFIO supports a modular device interface
 - PCI (vfio-pci) implemented
- VFIO has no KVM dependencies
 - Used only for acceleration
 - Non-x86 guests on x86 host work today
 - ppc g3beige – Big Endian driver test platform!
 - Any guest platform with PCI support
Great, how do we use it?
Requirements

- AMD-Vi or Intel VT-d capable hardware
- Linux 3.6+ host
 - CONFIG_VFIO_IOMMU_TYPE1=m
 - CONFIG_VFIO=m
 - CONFIG_VFIO_PCI=m
 - modprobe vfio-pci
- Qemu 92e1fb5e+ (1.3 development tree)
Understanding IOMMU groups (easy example)

- Device to assign:
 01:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

- Find the group:
 $ readlink /sys/bus/pci/devices/0000:01:10.0/iommu_group
 ../../../../kernel/iommu_groups/15

- IOMMU Group = 15

- Check the devices in the group:
 $ ls /sys/bus/pci/devices/0000:01:10.0/iommu_group/devices/0000:01:10.0
Binding to vfio-pci

- Unbind from device driver

  ```
  $ echo 0000:01:10.0 | sudo tee /sys/bus/pci/devices/0000:01:10.0/driver/unbind
  ```

- Find vendor & device ID

  ```
  $ lspci -n -s 01:10.0
  01:10.0 0200: 8086:10ca (rev 01)
  ```

- Bind to vfio-pci

  ```
  $ echo 8086 10ca | sudo tee /sys/bus/pci/drivers/vfio-pci/new_id
  ```

- Check

  ```
  $ ls /dev/vfio
  15  vfio
  ```
Start a guest

```
sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \\
vga std -vnc :0 -net none -enable-kvm \\
device vfio-pci,host=01:10.0,id=net0
```
Start a guest

```
sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0
```

- Why the sudo?
Start a guest

```
sudo qemu-system-x86_64 -m 2048 -hda rhel6vm -vga std -vnc :0 -net none -enable-kvm -device vfio-pci,host=01:10.0,id=net0
```

- Why the sudo?

```
$ ulimit -l
64 kilobytes megabytes
```

- VFIO enforces user limits!
 - VFIO security++
Why is memory locked?

- For x86, all of guest memory is pinned on the host
 - No guest visible IOMMU
 - Devices can DMA to any guest memory address
 - Guest memory can't be swapped if it's a DMA target
 - We don't know what memory is a DMA target
 - Pin it all!
It's just a ulimit, increase it!

$ sudo -s
chown $USER:$GROUP /dev/vfio/15
chmod 660 /dev/vfio/vfio
ulimit -l 2117632
su - $USER
$ qemu-system-x86_64...
Maths

$ sudo -s
chown $USER:$GROUP /dev/vfio/15
chmod 660 /dev/vfio/vfio
ulimit -l 2117632
su - $USER
$ qemu-system-x86_64...
Maths

- ulimit is padded: $2048 \times 1024 = 2097152$
- Both guest memory and devices are mapped
 - Frame buffer, PCI MMIO BARs, etc.
- +20MB covers additional mappings for this config
 - $(2048 + 20) \times 1024 = 2117632$
- Deterministic?
 - +512MB covers 32bit MMIO space (Q35?)
 - What about 64bit MMIO or memory hotplug?
Other options

- /etc/security/limits.conf
 - Set the ulimit for a user
- libvirt will need to set limits when using vfio-pci
- Other?
Understanding IOMMU groups (harder example)

- Device to assign:
 05:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5755 Gigabit Ethernet PCI Express (rev 02)

Find the group:

$ readlink /sys/bus/pci/devices/0000:05:00.0/iommu_group
../../../../kernel/iommu_groups/8

- IOMMU Group = 8

- Check the devices in the group:

$ ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices/
 0000:00:1c.0 0000:00:1c.4 0000:04:00.0 0000:05:00.0

Whoa
Why?

$ lspci -t -s 1c.
- [0000:00] + - 1c.0 - [04] -- \
 - 1c.4 - [05] --

$ lspci -s 1c.
00:1c.0 PCI bridge: Intel Corporation 82801JI
 (ICH10 Family) PCI Express Root Port 1
00:1c.4 PCI bridge: Intel Corporation 82801JI
 (ICH10 Family) PCI Express Root Port 5

Device 1c is a multifunction device that does not support PCI ACS control

- Devices 04:00.0 & 05:00.0 can potentially do peer-to-peer DMA bypassing the IOMMU
- IOMMU Groups recognize they are not isolated
Can we still use it?

for i in $(ls /sys/kernel/iommu_groups/8/devices/); do
echo $i | sudo tee \
 /sys/kernel/iommu_groups/8/devices/$i/driver/unbind
VEN=$(cat /sys/kernel/iommu_groups/8/devices/$i/vendor)
DEV=$(cat /sys/kernel/iommu_groups/8/devices/$i/device)
echo $VEN $DEV | sudo tee \
 /sys/bus/pci/drivers/vfio-pci/new_id
Done

• Attach all the devices to vfio-pci
• Ownership is based on group
• Unused devices are held by vfio-pci for isolation
• Advanced users: VFIO also allows group members to be assigned to pci-stub or no driver to prevent user access. pci-stub strongly preferred.
What about performance?

- PCI config space
 - Not performance critical
 - vfio-pci & pci-assign are equivalent
- I/O port access
 - Not used by high performance devices
 - vfio-pci & pci-assign are equivalent
- MMIO region access
 - Both vfio-pci & pci-assign directly map to VM
 - vfio-pci & pci-assign are equivalent
What about performance? (cont)

- Interrupts
 - pci-assign: KVM interrupt handler, posted to guest
 - vfio-pci: VFIO interrupt handler connected to KVM irqfd
 - Very low overhead VFIO → KVM signaling
 - Testing shows vfio-pci has an advantage*
 - Likely from non-threaded vs threaded interrupt handler
 - Preliminary data from HP on 10G NIC is promising

*netperf TCP_RR (igbvf, e1000e, tg3)
Device support

• Most commercial use of device assignment?
 • NICs
 • HBAs

• Most requested hobbyist/enthusiast device?
 • VGA
 • Video encoders/capture
Why is VGA so hard?

• Legacy I/O ranges
 • MMIO: 0xa000000 – 0xbfffff
 • I/O port: 0x3c0 – 0x3df
• Routing controlled through host chipset
 • For every R/W to regions, switch host routing, access, restore
 • Host use of VGA arbiter still evolving
• ROM dependencies
 • ROM initializes the device (primary head or Linux)
 • Can bypass virtualized access paths (1:1 mapping)
 • Accessibility problems
Why is VGA so hard? (cont)

- Driver
 - Companion device & chipset dependencies
 - Black box
- Qemu
 - Emulated VGA is not easy to remove
 - -nographics is not sufficient (getting better?)
 - Bus topology for multiple graphics cards
- BIOS/Qemu
 - Greatly improved to support large framebuffers
 - But not multiple
Call to action

- Please test & use VFIO
 - Host Linux kernel 3.6+
 - Qemu 1.3+ & current development tree
- Needed
 - libvirt & virt-manager support
 - Test infrastructure
 - Error handling (AER)
 - VGA support
 - Power management
 - New host platform support
 - Hardware vendors: Support PCI ACS!
Questions?
Thanks!