Libvirt. Why should I care?

Michal Prívozník
mprivozn@redhat.com
KVM Forum Düsseldorf 2014
QEMU/KVM

• Runs quickly
• Scalability
• Portable
QEMU/KVM

- No host management
- Multiple interfaces
- No language bindings
- No inter-VM perspective
Libvirt

- C library, bindings
- Stable API
- Multiple hypervisors

http://libvirt.org
Domain startup

- Query QEMU capabilities
 - Get list of supported devices, attributes, events, etc.
- Prepare host devices
 - PCI/USB/SCSI passthrough
- Reserve VNC/SPICE ports
Domain startup

- Consult **numad** for placement
 - Mystery since vCPU/memory can be hotplugged

- **Build command line**
 - Most of the host resources allocated

- **fork()**
 - Drop all unneeded capabilities
Domain startup (child)

• Report PID to the daemon
 • Needed later in the process
• Lock domain disks
 • virtlockd
• Honor NUMA settings
 • Place onto configured NUMA nodes
• Set process security labels, cwd, etc.
 • Drop the rest of unneeded admin capabilities
Domain startup

• Create cgroup hierarchy
 • Selectively allow devices, set blkio, etc.

• Set security labels on domain resources
 • Disks, host devices, chardevs, kernel, etc.

• Complete handshake to child
 • Child `execve()`
Domain startup

- Connect to the monitor
 - Finish setting cgroup, set runtime values
- Start domain vCPUs
- Run post-exec hook script
CGroup layout

- Keep directory as flat as possible
 - $ROOT/system/libvirtd.service/libvirt/qemu/dom1
 - $ROOT/machine/dom1.libvirt-qemu

- SystemD integration
 - Idea is to have one manager
 - A domain (scope), a group (slice)

- The path is configurable in XML
CGroup layout example
Virtual Networks

- Create a virtual bridge
- Operating modes: NAT, Isolated, Routed
- Run DHCP/DNS server
Network Filters

Enforce network traffic filtering on vNIC basis:

01. <devices>
02. <interface type='bridge'>
03. <mac address='00:16:3e:5d:c7:9e'/>
04. <filterref filter='clean-traffic'>
05. <parameter name='IP' value='10.0.0.1'/>
06. </filterref>
07. </interface>
08. </devices>
Network Filters

Filters written in XML:

01. <filter name='no-ip-spoofing' chain='ipv4-ip' priority='-710'>
02. <uuid>2b308492-52d3-4bda-8f0c-1dedbcf58e04
03. <rule action='return' direction='out' priority='100'>
04. <ip srcipaddr='0.0.0.0' protocol='udp'/>
05. </rule>
06. <rule action='return' direction='out' priority='500'>
07. <ip srcipaddr='$IP'/>
08. </rule>
09. <rule action='drop' direction='out' priority='1000'/>
10. </filter>
Network Filters

Automatic IP address detection:

- **DHCP snooping**
 - Multiple IPs per interface
 - Combine with filtering untrusted DHCP server

- **IP packed snooping**
 - Single IP per interface
Secrets

- Used to store passphrases for QCow2/Ceph/iSCSI disks
- Libvirt provides stored passphrase to auth mechanism
- Passphrases can be stored on disk, or in memory, and set to be private
Storage management

- Pools
 - Local: directory, LVM VG, disk
 - Shared: NFS, iSCSI, Gluster, RBD

- Volumes
 - Local: file, LVM LV, partition
 - Shared: file, LUNs
sVirt

- DAC is not enough.
- Malicious guest is threat to others running under the same user.
- Aim is MAC policy enforced by the host kernel.
- Libvirt generates dynamic SELinux labels.
- Set label on disk images, sockets, devices, etc.
Snapshots

<table>
<thead>
<tr>
<th></th>
<th>disk</th>
<th>memory</th>
<th>checkpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal</td>
<td>No</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>external</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Create, revert, merge (pull/commit), delete
- Libvirt keeps metadata
Questions?