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Agenda

● Problems
● Unsafe userspace device drivers
● Device assignment for nested guests

● Solution
● Status update



BACKGROUNDS
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Backgrounds

● What the talk is about?
● DMA of assigned devices (no PCI configrations, IRQs, MMIOs…)
● vIOMMU (QEMU, x86_64/Intel)

● These two features cannot work together (before)...
● Guest IOMMU page table is only visible to the guest
● An assigned hardware cannot see the guest IOMMU page table

● Will we need it?



PROBLEMS
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Problem 1: Userspace Drivers

● More userspace drivers!
● VFIO/UIO driver can pass though a device to userspace
● DPDK/SPDK uses PMDs to drive devices

● However, userspace drivers are not trusted
● MMU protects CPU accesses (CPU instructions)
● IOMMU protects device accesses (DMA)

● What if we want to “assign” an assigned device to DPDK in the guest?
● No vIOMMU, means no device DMA protection
● Guest kernel is at risk: as long as userspace driver used, kernel tainted!
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● How device assignment works for L1 guest?

● Device seen by the L1 guest

● Guest uses L1GPA as DMA addresses

● Host IOMMU maps L1GPA → HPA before guest starts

● What if we assign a hardware twice to a nested guest?
● Device seen by both L1 & L2 guest

● L2 guest uses L2GPA as DMA address

● We need host IOMMU to map L2GPA → HPA…  but how?

Problem 2: Device Assignment for 
Nested Guests
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Problem 2: Device Assignment for
Nested Guests (cont.)

Host 
Memory

Host IOMMU

VFIO driver

L1 Guest 
Memory

L1 Guest IOMMU

PCI Device

PCI Device

VFIO driver

L2 Guest 
Memory

PCI Device

Host

L1 Guest

L2 Guest

Provides L2GPA -> L1GPA 
Mapping

Provides L1GPA -> HPA 
Mapping



SOLUTION



WHAT WE HAVE?
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DMA for Emulated Device, w/o vIOMMU
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DMA for Emulated Device, w/ vIOMMU
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DMA of Assigned Devices, w/o vIOMMU
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WHAT WE NEED?
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DMA of Assigned Devices, w/ vIOMMU
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IOMMU Shadow Page Table
Hardware IOMMU page tables without/with a vIOMMU in the guest
(GPA→HPA is the original page table; IOVA→HPA is the shadow page table)
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Synchronizing Shadow Page Tables

● Solution 1 (not used): Write-protect guest page table
● Complicated; possibly need a new KVM interface to report the event

● Solution 2 (being used): VT-d caching mode
● “Any page entry update will require explicit invalidation of caches” 

(VT-d spec chapter 6.1)
● No KVM change needed
● Have existing Linux guest driver support
● Intel-only solution; PV-like, but also applies to hardware
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Shadow Page Tables: MMU vs IOMMU

TYPE MMU IOMMU

Target Processors Devices

Allow page faults? Yes (of course!) No [*]

Trigger mode
(shadow sync) Page Fault Explicit Message

(caching-mode)

Page Table Format 32bits, 64bits, PAE,... 64bits

Cost
(shadow sync)

Small, relatively
(KVM only)

Huge
(long code path [**])

Need Previous State? No Yes [***]

[*]: Upstream work ongoing to enable Intel IOMMU page faults
[**/***]: Please refer to follow up slides for more information
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Shadow Sync: Costly for IOMMU!
(Example: when L2 guest maps one page)
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Shadow Sync: About State Cache

● MMU shadow sync
● Talk to page tables: PGD, PUD, PMD, PTE,…
● Doing set() on page table entries
● No need to cache previous state

● IOMMU shadow sync
● Talk to vfio-pci driver: VFIO_IOMMU_MAP_DMA, VFIO_IOMMU_UNMAP_DMA

(no direct access to page tables, the same even to vfio-pci driver underneath)
● Doing add()/remove() on page table entries
● We can either create a new entry (it must not exist before), or delete an old entry
● Previous state matters, since otherwise we can’t judge what page has been mapped



STATUS UPDATE
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Some Facts… and TBDs

● Emulated devices v.s. Assigned devices from IOMMU perspective
● Emulated: fast mapping (no sync), slow IO (need guest translation)
● Assigned: slow mapping (need sync), fast IO (no guest translation)

● Some performance numbers (Intel ixgbe, 10Gbps NIC)
● Kernel ixgbe driver, very slow (~80% degradation on L1)
● Userspace DPDK driver, very fast (close to line speed, both L1 & L2)

● Future works?
● Reduce context switches when sync shadow pages? (vhost-iommu?)
● Nested page table? (need hardware support, like EPT comparing to softmmu)
● Sharing the state cache? 

(e.g. vfio-pci has similar state cache, see “vfio_iommu.dma_list”)
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Wanna try?

● QEMU command line to try this out:

● Versions:
● QEMU: please use v3.0 or newer
● Linux: please use v4.18-rc1 or newer

● For more information, please visit:
● https://wiki.qemu.org/Features/VT-d

qemu-system-x86_64 -M q35,accel=kvm,kernel-irqchip=split -m 2G \
                   -device intel-iommu,intremap=on,caching-mode=on \
                   -device vfio-pci,host=XX:XX:XX

qemu-system-x86_64 -M q35,accel=kvm,kernel-irqchip=split -m 2G \
                   -device intel-iommu,intremap=on,caching-mode=on \
                   -device vfio-pci,host=XX:XX:XX

https://wiki.qemu.org/Features/VT-d


THANK YOU

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatlinkedin.com/company/red-hat
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