Enhance KVM for Intel® Virtualization Technology for Connectivity

YaoZu (Eddie) Dong
Eddie.dong@intel.com
Intel Open Source Technology Center
Agenda

Intel® Virtualization Technology for Connectivity (VT-c)
Virtio-net overview
VMDq enhancement
SR-IOV
Summary
What is VT-c

VMDq

• Multiple queue pairs for partitioning
• Filters a specific VM’s unicast packets into individual receive queues
 – Such as MAC filtering, VLAN filtering
• Ensures transmit fairness between VMs
 – Prevents head-of-line blocking

SR-IOV

• PCI SIG IO virtualization technology, providing multiple virtual functions (VFs) to partition among VMs
Virtio-net Architecture

Virtio-net (Service) — Qemu IO Process

- Xmit vqueue (VQ 0)
- Receive vqueue (VQ 1)

- Add_buf
- Get_buf

- file_operations

Host Linux Kernel

- Virtual Bridge
- Native Driver
- Tap/Tun Driver

Guest Kernel

- KVM

One copy for transmission & receive
vringfd (WIP by Rusty)

A separate char device used for vring based user/kernel communication

• **File_operations**: for user access

• **Vring_ops**: to manipulate the vring
 – **Needs_poll**: data ready
 – **Pull**: (like pop in user level BE service)
 – **Push**: (like push in user level BE service)

Tun device enhancement with vring

• **Xmit can directly take user buffer (after pined) for xmit**

• **Transmission becomes zero copy now**
What is VMDq

An Integral Part of Intel® Virtualization Technology for Connectivity, or VT-c

HW L2 classifier/sorter places packet to the destination VM’s queue based on MAC address and VLAN tags

VMDq Enhancement

Using HW pre-sorting mechanism to avoid receive side copy

• **Renato J Santos proposed a network enhancement in Linux to support VMDq in Xen**
 – A network driver can take skbs from outside
 – A new API `vmq_netif_rx` is used to replace `netif_rx` to bypass bridge

• **A kernel module, say VMDq agency, to receive pre-sorted packets with 0 copy**

 Reusing `vringfd` for kernel side `vring` operation and avoid transmission side copy

 Packets to default queue still go to bridge

• **Multiple queue guest network driver**
SR-IOV Specification

Start with a single function device

- HW under the control of privileged SW
- Includes an SR-IOV Extended Capability
- Physical Function (PF)

Replicate the resources needed by a VM

- MMIO for direct communication
- RID to tag DMA traffic
- Minimal configuration space
- Virtual Function (VF)

Introduces PCI Manager (PCIM)

- Conceptual SW entity
- Completes the configuration model
- Translates VF into a full function
- Configures SR-IOV resources
SR-IOV Virtio-net architecture

- **VF Driver**:
 - Qemu IO Process
 - SR-IOV
 - Normal PCI driver with hot add/removal support

- **PF driver**:
 - KVM
 - DM/PF Communication
 - VF management
 - Network configuration
 - CFGS access

- **SR-IOV**:
 - CFGS emulation
 - PF get notified when VF CFGS is modified. HW will have this capability

- **Host Linux Kernel**:
 - 1: Inter-VM communication
 - 2: HW mailbox/doorbell
 - 3: PIO/MMIO based virtual mailbox/doorbell
Summary

VT-c brings significant network performance boost with minimal CPU use

Many tasks ahead to push changes to upstream Linux

Your participation is very welcome!!

• Discuss details at BOFs?
Backup
Virtio-net with VMDq

Qemu IO Process

Other Host Processes

Virtio-net (Service)

pop
push
pop
push

Xmit vqueue (VQ 0)

Add_buf
Get_buf
Add_buf
Get_buf
Add_buf
Get_buf

Receive vqueue (VQ 1)

Presorted receive vqueue (VQ 2)

Virtio-net (Service)

Qemu IO Process

Other Host Processes

Virtio-net (Service)

pop
push
pop
push

Add_buf
Get_buf
Add_buf
Get_buf
Add_buf
Get_buf

VMDq agency

Vringfd

Virtual Bridge

Native Driver

Tap/Tun Driver

Vring_ops

get_buffer / used_buffer

vmq_netif_rx / vmq_alloc_skb

File_operations

KVM

Guest Kernel

Host Linux Kernel

Multiple Queue Virtio-net Driver

Open Source Technology Center

Software and Solutions Group

Software and Solutions Group
Pre-sorted Packet Receiving

Qemu IO Process

Virtio-net (for default queue & initialization)

Other Host Processes

Virtio-net Driver

Guest Kernel

VMDq Enabled Native Driver

Skb-1

Host Linux Kernel

Vringfd

KVM

May be fragmented (up to FE side)

1: VMDq agency
2: Add_buf
3: Repeat 1-2 till full of ring
4: pull
5: get_buffer
6: DMAed
7: vmq_alloc_skb
8: Set receive descriptor
9: Repeat 4-8
10: packet arrived
11: Interrupt
12: vmq_netif_rx
13: used_buffer
14: push
15: Interrupt
16: Repeat 10-15
17: Get_buf
18: receive skb
19: May refill buffer
20: Repeat 17-19
SR-IOV VF/PF Communication Channel

Inter-VM APIs → PV VF driver

- Depends on VMM, Guest OS, and even OSVs
 - There is no Windows Inter-VM APIs in upstream, no standard release yet.

Guest hardware → VMM independent VF driver

- Real Hardware mailbox/doorbell – No SR-PCIM involvement
 - Good Performance, but IHVs may not implement.

- Virtual mailbox/doorbell – Need SR-PCIM support
 - Virtual BAR (PIO or MMIO)
 - Need SR-IOV standard

VF/PF driver pair's decision to use whatever mechanism, but suggest using guest hardware.
PCI Device Instance of VF in Host?

Created VF instance

- **Pros:** Easy for assignment
- **Cons:** Confuse to other pci modules, invasive change, need community decision on how to change → Need long time.
- **Could be a long term solution.**

No create VF instance

- **Need access path for Qemu to R/W VF CFGS**
- **Modifications are mostly in Qemu side**
Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights are protected.