
CPU models after Spectre & Meltdown

Paolo Bonzini
Red Hat, Inc.
KVM Forum 2018

Paolo Bonzini – KVM Forum 20182

“Can this guest run on that machine?”

● It depends!

● Host processor

● Microcode version

● Kernel version

● QEMU

● Machine type

Paolo Bonzini – KVM Forum 20183

How can things go wrong?

● After upgrading microcode a CPUID flag disappears (TSX)

● After downgrading microcode a CPUID flag disappears (IBRS)

● After upgrading QEMU a new kernel is required (e.g. kvm-pv-
eoi requires 3.6)

● After changing a kernel module parameter a flag disappears
(e.g. VMX)

● When migrating to an older kernel, vhost drops support for
some virtio features

Paolo Bonzini – KVM Forum 20184

“Can this guest run on that machine?”

● Lower levels of the stack
affect the availability of
features

● Higher levels of the stack
decide what features to
enable

KVM

QEMU

libvirt

OpenStack oVirt

Paolo Bonzini – KVM Forum 20185

Why CPU models?

● Most processor features must be present on the host for the
guest to use them

● Guest ABI must not change across live migration

● CPU models describe the guest processor ABI in order to:
● set up identical ABI on source and destination
● discern which hosts you can start your VM

Paolo Bonzini – KVM Forum 20186

What’s in a CPU model?

● Family/model/stepping (“f/m/s”)
cpu family : 6
model : 142
stepping : 9

● Model name
model name : Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

● Flags
flags : fpu vme de pse tsc msr pae mce cx8 apic sep
mtrr pge mca cmov pat pse36 clflush …

● In the future, MSR values

Not necessarily the actual
processor you’re running on

Paolo Bonzini – KVM Forum 20187

CPU models in QEMU

● Named configurations allow scheduling flexibility
● Processor code names (-cpu IvyBridge)

● Least common denominator (-cpu kvm64)

● Whatever TCG provided when the model was added (-cpu qemu64)

● Passthrough configurations are simple and perform well:
● Only features that QEMU knows about (-cpu host)

● All features implemented by KVM (-cpu host,migratable=off)

● Default for non-x86 architectures is -cpu host

● Default for x86 is -cpu qemu{32,64} (horrible)

Paolo Bonzini – KVM Forum 20188

-cpu qemu64

cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Full generic retpoline

Paolo Bonzini – KVM Forum 20189

CPU models in libvirt

● Name + flags
● host-passthrough

● Same as -cpu host (with default migratable=on)

● User ensures same processor+kernel+microcode across migration
source and destination

● host-model

● Automatic conversion to name + flags
● Restricted to flags known by KVM+QEMU+libvirt
● Configuration preserved by libvirt across migration
● Live migration from new to old host will fail gracefully

Paolo Bonzini – KVM Forum 201810

Spectre & Meltdown vs. CPU flags

● CPUID bits report availability of mitigations (IBRS, IBPB,
SSBD, L1FLUSH, …)

● MSR bits report non-vulnerable CPUs (RDCL_NO, RSBA)

● Chicken bit availability is usually keyed by f/m/s

● Unused features become important for performance (PCID)

Paolo Bonzini – KVM Forum 201811

CPUID bits

● Add new models, or require manual addition of flags?
● Adding new models was done for IBRS/IBPB (Spectrev2) but it

doesn’t scale
● On the other hand, the list of flags constantly grows: ssbd, pcid,

spec-ctrl, virt-ssbd, amd-ssbd, amd-no-ssb, ibpb
● As of January 2018, OpenStack did not support adding flags

● Not adding any more models after Spectrev2

● Libvirt host-model will add critical flags automatically, provided
everything is updated

Paolo Bonzini – KVM Forum 201812

MSR bits

● Reading host MSR features is a privileged operation
● QEMU cannot probe processor features that are exposed via MSRs
● In any case, available on the host != supported by KVM

● New KVM ioctls
● KVM_GET_MSR_FEATURE_INDEX_LIST (return list of MSRs that

contain KVM capabilities)
● KVM_GET_MSR on /dev/kvm (return host capabilities that are

exposed via M`SRs)
● Already used for microcode revision, VMX capabilities, etc.

● QEMU and libvirt users shouldn’t care about CPUID vs. MSR

Paolo Bonzini – KVM Forum 201813

MSR bits

● IA32_ARCH_FACILITIES
● Discovered via CPUID
● Provides extra information on speculative execution mitigations
● Support added to KVM, not yet in QEMU

● Both “positive” and “negative” features included
● RDCL_NO - “No rogue data cache load”
● RSBA - “Always stuff return buffer”

Paolo Bonzini – KVM Forum 201814

Positive vs. negative features

● Return stack – a simple indirect branch predictor, specific to
call/ret
● On Skylake, empty return stack falls back to BTB
● OS can do dummy calls at certain points to keep it full

● RSBA (“RSB alternate”?) lets guests avoid checking f/m/s

“When RSBA is set, it indicates that the VM may run on a
processor vulnerable to exploits of Empty RSB conditions
regardless of the processor’s DisplayFamily/DisplayModel”

Paolo Bonzini – KVM Forum 201815

Positive vs. negative features

● RDCL_NO - “No rogue data cache load”
● Must be clear if the guest will ever migrate to an unfixed processor
● Safe choice leads to suboptimal performance
● Works just like any CPUID bit

● RSBA - “Always stuff return stack”
● Must be set if the guest will ever migrate to Skylake
● I started this VM one year ago. How was I supposed to know‽

● Please Intel, DO NOT define negative features!

Paolo Bonzini – KVM Forum 201816

Chicken bits

● Disable features of the processor for debugging or
“emergency” reasons

● Typically set by firmware, sometimes by OS
● In a guest, we just pass the value that was set by the host
● Nothing to do in the firmware, just another MSR-based feature

● The MSRs can be provided for any host or guest f/m/s
● No conflict yet…

Paolo Bonzini – KVM Forum 201817

So many models!

● Different features between low-end and high-end platforms
● Consumer/workstation: Pentium, Core, Xeon E3
● Server: Xeon E5/E7 (now Gold and Platinum)

● Hard to know exactly which features were in which processor!
● Even harder to know which features will be in unreleased

processors
● Result: some models in QEMU are “wrong” (missing or extra CPUID

bits due to consumer vs. server)
● Lack of PCID went unnoticed for some models until Meltdown

Paolo Bonzini – KVM Forum 201818

What makes CPU models hard?

● Dozens of flags, sometimes interrelated (AVX makes no sense
without XSAVE)

● Flags defined in a hurry

● Proliferation of processor SKUs

● Extreme backwards compatibility

● QMP API limitations

Paolo Bonzini – KVM Forum 201819

Backwards compatibility

● Libvirt wants to keep every past XML runnable and with the
same guest ABI

● Not only virsh define-d persistent guests; the user XML too

● “pc” machine type default

● “qemu64” CPU model default

Paolo Bonzini – KVM Forum 201820

QMP and Libvirt limitations

● Libvirt doesn’t have a way to query CPU model changes
across QEMU machine types
● If CPU models change, Libvirt cannot precisely compute runnability

anymore
● Rule: we can't change the CPU model "runnability" between

machine-types

● Impossible to add new features provided by new kernels

● How to do better?

Paolo Bonzini – KVM Forum 201821

Versioned CPU models!

● CPU models exist in multiple versions

● Two ways to specify the version:
● -cpu Name-X.Y (e.g. -cpu Haswell-3.1)

● -cpu Name,version=X.Y (e.g. -cpu Haswell,version=3.1)

● Libvirt can query all CPU model versions via query-cpu-model-
expansion

● Machine types specify the version through compat properties

● Users can still override the default version

Paolo Bonzini – KVM Forum 201822

Open issues

● What is the minimal required kernel version by QEMU?
● Currently 3.6 for Intel
● Example: adding nested virtualization by default would bump the

minimum kernel version to 4.20

● MAXPHYADDR
● Different across SKUs, not easily virtualizable
● Must be solved in KVM

● Duplication of CPU models between QEMU and Libvirt

Paolo Bonzini – KVM Forum 201823

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

