
Validating and
defending QEMU

TCG targets
Alex Bennée

alex.bennee@linaro.org
KVM Forum 2014

0

mailto:alex.bennee@linaro.org

Introduction
ARMv8

Not just more bits
New Instruction Set

Lots of interest in the community
Not a lot of available HW

Strong demand for QEMU solution

The Challenge
Mostly new code
Can we get it right first time?

Estimating defect rates
Coverity estimate for FLOSS of our size: 0.65/kloc

assumes "many eyeballs" review
Estimate based on target-arm/translate.c

9.5 kloc
~100 "fixes" applied in commits
defect rate of 10.96/kloc

Size of the problem
Architecture Lines of Code DR:0.65 DR:10.96
i386 21118 13.7 231.5
ppc 11317 7.4 124.0
arm 14029 9.1 153.8
aarch64 16874 11.0 184.9
Total 63338 41.2 694.2

1 2

AArch64 kernel+userspace boot
GCC Code Coverage Report

Directory: target-
arm/ Exec Total

Date: 2014-
10-10 Lines: 2996 18089

low: <
75.0 %

CPU Specific files
GCC Code Coverage Report

Directory: target-
arm/ Exec Total

File: target-
arm/cpu.h Lines: 98 180

Date: 2014-10-
10 Branches: 33 125

translate-a64.c
GCC Code Coverage Report
Directory: target-arm/ Exec Total

File:
target-
arm/translate-
a64.c

Lines: 1676 5411

Date: 2014-10-10 Branches: 613 2796

The rest
GCC Code Coverage Report

Directory: target-
arm/ Exec Total

Date: 2014-
10-10 Lines: 2996 18089

low: <
75.0 %

RISU
"Random Instruction Sequences for Userspace"

RISU System Architecture

TCP Socket Connection

Test Sequence

RISU

Validating Platform (Apprentice)

Test Sequence

RISU

Reference Platform (Master)

The Test Sequence
Raw binary containing machine code
Loaded and executed by RISU

Contents of the Sequence
Setup code
Test instructions
Pseudo RISU operations

RISU Ops
Architecture specific

Encoded in a reserved opcode
Multiple operations are needed

The RISU Operations are:
Compare Registers/Memory
Set/Get Memory Pointers
Signal end of test

Typical execution sequence

Test Patterns
Generate a pseudo-random sequence based on the pattern
./risugen --numinsns 100000 --pattern "ADDx.* A64" aarch64.risu addx.risu.bin

Define an instruction format with fields and constraints
C3.5.1 Add/subtract (extended register)
31 30 29 28 27 26 25 24 |23 22| 21 | 20 16 15 13 12 10 9 5 4 0
sf op S 0 1 0 1 1 | opt | 1 | Rm opt imm3 Rn Rd
NB: rn == 31 is perfectly valid, however RISU doesn't generate instructions
 that
use the SP as that can cause problems with different SPs across systems
ADDx A64 sf:1 00 01011 00 1 rm:5 option:3 imm:3 rn:5 rd:5 \
!constraints { $rn != 31 && $rd != 31 && $imm <= 4; }
ReservedValue: break the (imm <= 4) constraint
ADDx_RES A64 sf:1 00 01011 00 1 rm:5 option:3 imm:3 rn:5 rd:5 \
!constraints { $imm > 4; }

Load/Store Test Pattern
./risugen --numinsns 100000 --pattern "STRHr.*A64" --pattern "LDRHr.*A64" aar
ch64.risu ldstr.risu.bin

C3.3.10 Load/store register (register offset)
31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
size 1 1 1 V 0 0 opc 1 Rm opt S 1 0 Rn Rt
XXX opt=011 for now (LSL), other options NIY.
XXX the constraint rn != rm is our limitation, not imposed by arch.
STRHr A64 01 111000 00 1 rm:5 011 shft:1 10 rn:5 rt:5 \
!constraints { $rn != 31 && $rn != $rt && $rm != $rt && $rn != $rm; } \
!memory { align(2); reg_plus_reg_shifted($rn, $rm, $shft ? 1 : 0); }

LDRHr A64 01 111000 01 1 rm:5 011 shft:1 10 rn:5 rt:5 \
!constraints { $rn != 31 && $rn != $rt && $rm != $rt && $rn != $rm; } \
!memory { align(2); reg_plus_reg_shifted($rn, $rm, $shft ? 1 : 0); }

Load/Store Generated Code
Get offset into memory ptr

1: mov x0, #0x154 ; Random aligned offset
2: .inst 0x00005af3 ; RISU_OP_GETMEMBLOCK

Ensure base + index point at real memory
3: sub x27, x0, x10
4: mov x0, #0x0

Do load instruction
5: dsb sy
6: ldrh w6, [x27,x10]
7: dsb sy

Recalulate offset
8: .inst 0x00005af3 ; RISU_OP_GETMEMBLOCK
9: sub x27, x27, x0

Trigger RISU compare operations
10: .inst 0x00005af4 ; RISU_OP_COMPAREMEM
11: .inst 0x00005af0 ; RISU_OP_COMPARE

Limitations
No system instructions
Unable to test branching
Avoids manipulating the SP

Porting

RISU Binary
Boilerplate

recv_and_compare_register_info
Helper Functions

advance_pc
report_match_status

Signal Context Code
reginfo_init/is_eq/dump/report_mismatch
architetcure value masks

Code Generator
Setup code generation
Pre/post amble code for memory blocks
Encode RISU Operations

Instruction Templates
Largest amount of effort
Machine readable source would be handy
Otherwise a PDF which cut&pastes well ;-)

Group instructions together

Case Study: QEMU TCG
AArch64 Implementation

SUSE Work
RFC AArch64 implementation
Organic development to support linux-user build farm

Our approach
Clean slate
Follow the ARM ARM decoding structure
Bootstrap to run RISU

Implementing the instructions
Tested the boot-strapped instructions with RISU
We divided the remaining groups between

Peter Maydell
Claudio Fontana
Myself

Implemented the whole group
sometimes with Graf/Matz reference
always tested with RISU

Timeline
September 2013

LCU13 planning
RISU prototype for AArch64

November 2013
I joined Linaro ;-)

April 2014
QEMU 2.0
AArch64 linux-user (no crypto)

August 2014
QEMU 2.1
AArch64 System Emulation
AArch64 Crypto Instructions

Reminder: Kernel Boot
GCC Code Coverage Report

Directory: target-
arm/ Exec Total

Date: 2014-
10-10 Lines: 2996 18089

low: <
75.0 %

Current RISU AArch64 Test Sequence
GCC Code Coverage Report

Directory: target-
arm/ Exec Total

Date: 2014-
10-10 Lines: 6783 18089

low: <
75.0 %

Post QEMU 2.0 bugs
5 A64 Specific Candidates

SQXTUN
"Fix un-allocated test of scalar SQXTUN"

Discovered by user testing on master
Mea culpa - RISU would have caught this but for me

Dead Code Removal
"Fix dead ?: in handle_simd_shift_fpint_conv()"

Dead code, could never execute

System Instructions
"Fix return address for A64 BRK instructions"

RISU Limitation
"fix TLB flush instructions"

Kernel system instruction

Supporting RISU on LAVA CI
Multi-node testing setups are a pain
Added support for record/playback

This allows for a simple stand-alone RISU test

Conclusions

Testing is key
RISU was key to our successful delivery of AArch64 work
qemu-aarch64 quickly adopted

very few complaints

Coverage Analysis
Verify your tests exercising the right bit
Identify areas which need more testing

Recommendation
"I'm writing a new ISA front end, should I use RISU?"

YES
Mature TCG ISAs can benefit as well

Debugging
Regression testing

Defend functionality with CI
Know about regressions as they happen

CI
QEMU's CI efforts are decentralised
Most CI is build focused

Buildbot
Travis

System specific CI testing is rare
Run manually by maintainers?
Linaro is committed to improving using LAVA

Future work for RISU
Up-streaming of record/playback code
Support for SP/PC related instructions
Expand RISU to a non-ARM architecture?

Questions?

