Validating and
defending QEMU

1CG targets

Alex Bennée

alex.bennee@linaro.org
KVM Forum 2014

mailto:alex.bennee@linaro.org

Introduction

e ARMVS
= Not just more bits
= New Instruction Set
e Lotsof interestin the community
= Not a lot of available HW
e Strong demand for QEMU solution

The Challenge

e Mostly new code
e Canwe getitrightfirst time?

Estimating defect rates

e Coverity estimate for FLOSS of our size: 0.65/kloc
= assumes "many eyeballs" review
e Estimate based on target-arm/translate.c
= 95kloc
= ~100 "fixes" applied in commits
= defect rate of 10.96/kloc

Size of the problem
Architecture Linesof Code DR:0.651 DR:10.962

1386 21118 13.7 231.5
ppc 11317 7.4 124.0
arm 14029 9.1 153.8
aarché4 16874 110 184.9

Total 63338 41.2 694.2

AArcho4 kernel+userspace boot

GCC Code Coverage Report
target-

Directory: Exec Tota
arm/

) 2014- L)

Date: 10-10 Lines: 2996 1808

low: <
7C N 0o/

CPU Specific files

GCC Code Coverage Report

Directory: target- Exec Tote
arm/

File: 28" Lines: 98 180
arm/cpu.h

Date: ?214_10_ Branches: 33 125

translate-ac4.c

GCC Code Coverage Report

Directory: target-arm/ Exec”’
target-

File: arm/translate- Lines: 1676
ab4.c

Date: 2014-10-10 Branches: 613 .

The rest

GCC Code Coverage Report

Directory: target- Exec Tota
arm/
2014 . (
Date: 10-10 Lines: 2996 1808
low: <

7C N 0oL

RISU

"Random Instruction Sequences for Userspace"

RISU System Architecture

Validating Platform (Apprentice) Reference Platform (Master)

Test Sequence Test Sequence

RISU TCP Socket Connection RISU

The Test Sequence

e Raw binary containing machine code
e Loaded and executed by RISU

Contents of the Sequence

e Setupcode
e Testinstructions
e Pseudo RISU operations

RISU Ops

e Architecture specific
= Encoded in areserved opcode
= Multiple operations are needed
e The RISU Operations are:
= Compare Registers/Memory
= Set/Get Memory Pointers
= Signal end of test

Typical execution sequence

Test Patterns

e Generate a pseudo-random sequence based on the pattern

./risugen --numinsns 100000 --pattern "ADDx.* A64" aarch64.risu addx.risu.bin

e Define an instruction format with fields and constraints

C3.5.1 Add/subtract (extended register)
31 30 29 28 27 26 25 24 |23 22| 21 | 20 16 15 13 12 109 54 0

#sfop S 0 1 06 1 1| opt | 1 | Rm opt 1mm3 Rn Rd
NB: rn == 31 is perfectly valid, however RISU doesn't generate instructions
that

use the SP as that can cause problems with different SPs across systems
ADDX A64 sf:1 00 01011 00 1 rm:5 option:3 imm:3 rn:5 rd:5 \

lconstraints { $rn != 31 && $rd != 31 && $imm <= 4; }

ReservedValue: break the (imm <= 4) constraint

ADDX_RES A64 sf:1 00 01011 00 1 rm:5 option:3 imm:3 rn:5 rd:5 \
lconstraints { $imm > 4; }

Load/Store Test Pattern

./risugen --numinsns 100000 --pattern "STRHr.*A64" --pattern "LDRHr.”*A64" aar
ch64.risu ldstr.risu.bin

C3.3.10 Load/store register (register offset)

31 30 29 28 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 54 0

size 1 1 1 V O 0 opc 1 Rm opt S 1 O Rn Rt

XXX opt=011 for now (LSL), other options NIY.

XXX the constraint rn != rm is our limitation, not imposed by arch.
STRHr A64 01 111000 00 1 rm:5 011 shft:1 10 rn:5 rt:5 \

lconstraints { $rn != 31 && $rn != $rt && $rm != $rt && $rn !'= $rm; } \
Imemory { align(2); reg_plus_reg_shifted($rn, $rm, $shft 2 1 : 0); }

LDRHr A64 01 111000 01 1 rm:5 011 shft:1 10 rn:5 rt:5 \
lconstraints { $rn != 31 && $rn != $rt && $rm != $rt && $rn = $rm; } \
I'memory { align(2); reg_plus_reg_shifted($rn, $rm, $shft 2 1 : 0); }

Load/Store Generated Code

Get offset into memory ptr

N

: mov X0, #0x154 ; Random aligned offset
: .1nst Ox00005af3 ; RISU_OP_GETMEMBLOCK

Ensure base + index point at real memory

W

: sub x27, x0, x10
: mov X0, #OxO

Do load instruction

5: dsb sy
6: ldrh w6, [x27,x10]
7: dsb sy
Recalulate offset
8: .1nst Ox00005af3 ; RISU_OP_GETMEMBLOCK
9: sub x27, x27, x0

Trigger RISU compare operations

10:
11:

.1nst Ox00005af4 ; RISU_OP_COMPAREMEM
.inst Ox00005af® ; RISU_OP_COMPARE

Limitations

e No system instructions
e Unable totest branching
e Avoids manipulating the SP

Porting

RISU Binary

e Boilerplate
= recv_and_compare_register_info
e Helper Functions
= advance pc
= report_match_status
e Signal Context Code
= reginfo_init/is_eq/dump/report_mismatch
m architetcure value masks

Code Generator

e Setup code generation
e Pre/post amble code for memory blocks
e Encode RISU Operations

Instruction Templates

e Largest amount of effort

e Machine readable source would be handy

e Otherwise a PDF which cut&pastes well ;-)
= Group instructions together

Case Study: QEMU TCG
AArcho4 Implementation

SUSE Work

e RFC AArché4 implementation
e Organic development to support linux-user build farm

Our approach

e Cleanslate
e Followthe ARM ARM decoding structure
e Bootstraptorun RISU

Implementing the instructions

e Tested the boot-strapped instructions with RISU
e Wedivided the remaining groups between

= Peter Maydell

= Claudio Fontana

= Myself
e Implemented the whole group

= sometimes with Graf/Matz reference

= glways tested with RISU

Timeline

September 2013

= LCU13 planning

= RISU prototype for AArché4
November 2013

= |joined Linaro;-)

April 2014

= QEMU 2.0

= AArché4 linux-user (no crypto)
August 2014

= QEMU 2.1

= AArché4 System Emulation

= AArché4 Crypto Instructions

Reminder: Kernel Boot

GCC Code Coverage Report
target-

Directory: Exec Tota
arm/
) 2014- L)
Date: 10-10 Lines: 2996 1808
low: <

7C N 0oL

Current RISU AArcho4 Test Sequence

GCC Code Coverage Report

Directory: target- Exec Tota
arm/

2014 . (

Date: 10-10 Lines: 6783 1808

low: <
7C N O

Post QEMU 2.0 bugs

e 5A64 Specific Candidates

SQXTUN

e "Fixun-allocated test of scalar SQXTUN"
= Discovered by user testing on master
= Mea culpa - RISU would have caught this but for me

Dead Code Removal

e "Fixdead ?:in handle_simd_shift_fpint_conv()"
s Dead code, could never execute

System Instructions

e "Fix return address for A64 BRK instructions”
= RISU Limitation

e "fix TLB flush instructions"
» Kernel system instruction

Supporting RISU on LAVA CI

e Multi-node testing setups are a pain
e Added support for record/playback
= This allows for a simple stand-alone RISU test

RISU Instruction Tests The aarch64 instruction tests

Results table

Filters used Toggle percentage Toggle legend ¥ (=]
Start build number: |2014-04-28 16:21:49 v | End build number: |2014-06-11 17:06:52 Unsubscribe from target goa
o | rr r v r r v [:
40
20
0

01/05/201404/05/201407/05/201410/05/201413/05/201416/05/201419/05/201422/05/201425/05/201428/05/201431/05/201403/06/201406/06/201409/06/2014

00:05 00:05 00:05 00:05 00:05 00:05 00:05 00:05 00:05

00:05 00:05 00:06 00:06

00:06

Conclusions

Testing is key

e RISU was key to our successful delivery of AArch64 work
e gemu-aarché4 quickly adopted
= very few complaints

Coverage Analysis

e Verify your tests exercising the right bit
e |dentify areas which need more testing

Recommendation

e "I'mwriting a new ISA front end, should | use RISU?"
= YES
e Mature TCG ISAs can benefit as well
= Debugging
= Regression testing
e Defend functionality with CI
s Know about regressions as they happen

Cl

e QEMU's Cl efforts are decentralised
e Most Clis build focused
= Buildbot
= Travis
e System specific Cl testingisrare
= Run manually by maintainers?
= |inarois committed to improving using LAVA

Future work for RISU

e Up-streaming of record/playback code
e Support for SP/PC related instructions
e Expand RISU to a non-ARM architecture?

Questions?

