
Improving the Out-of-Box KVM Performance

Andrew Theurer, IBM atheurer@us.ibm.com

2

 Topics

 Current performance and public benchmarks

 Example of “out of box” performance

 Some analysis of performance

 Improving performance with NUMA aware VM balancer

 Before/After test results

 Future work items

 Kernel or User?

3

 Current KVM Performance

 With Industry Standard Benchmarks – it is fantastic!
– SPECvirt_sc2010:

• More per-core #1 results than any other hypervisor (12, 16, 20, 40, 64, 80)[1]

• KVM results now from multiple vendors
• KVM scaling to biggest x86_64 servers
• As with almost any public benchmark, there is a lot of tuning to get the best result

 Out of Box (ad-hoc testing, PoC's, user workloads) – not quite as good as above
– Performance analysis & tuning is generally not done here

• Important that the hypervisor provide the best settings automatically
– Performance can be impacted by not choosing the best options

• Much better now with libvirt, virt-install (defaulting to virtio when possible)
• User may not be experienced with best settings, assumes bigger is better (why

have 2 vCPUs when I can have 16!!!)
• Some of the highest performing configurations require special hardware and

special configuration (does the user really know they have to enable virtual
functions for that “SR-IOV” thingy?)

– Performance is impacted by lack of NUMA optimizations for VMs
• This is the focus of this presentation

[1] For all details on SPECvirt_sc2010, see spec.org

4

 Example of Out-of-the-box Performance

 Let's take a relatively simple test case: 40 VMs (4-way, 2 GB) and have them run
Dbench (in tmpfs) at the same time on a 4 x Westmere-EX server (40 cores)

 Use sensible configurations (para-virtualized IO), no special optimizations

 Compare to “Mystery X86 Hypervisor” (MXH) with default configuration

 Aggregate Dbench throughput:
– KVM: 14541 MB/sec
– MXH: 22919 MB/sec (58% better!?!)

5

Analysis – What went wrong?

• Host CPU stats
– Guest: 97% Host: 3%

• Hypervisor overhead is probably not the primary issue

• NUMA optimization
– /proc/<pid>/numa_maps -where is our memory?

[vg-db0040(26824)]
node:[0] pages:[0228984] MiB:[00894] percent[050.48]
node:[1] pages:[0013569] MiB:[00053] percent[002.99]
node:[2] pages:[0182557] MiB:[00713] percent[040.25]
node:[3] pages:[0028473] MiB:[00111] percent[006.28]
[vg-db0039(26872)]
node:[0] pages:[0095351] MiB:[00372] percent[021.05]
node:[1] pages:[0114915] MiB:[00448] percent[025.37]
node:[2] pages:[0025176] MiB:[00098] percent[005.56]
node:[3] pages:[0217497] MiB:[00849] percent[048.02]
[vg-db0038(26913)]
node:[0] pages:[0130070] MiB:[00508] percent[028.65]
node:[1] pages:[0026870] MiB:[00104] percent[005.92]
node:[2] pages:[0264026] MiB:[01031] percent[058.16]
node:[3] pages:[0033010] MiB:[00128] percent[007.27]
[vg-db0037(26948)]
node:[0] pages:[0078001] MiB:[00304] percent[017.10]
node:[1] pages:[0078063] MiB:[00304] percent[017.12]
node:[2] pages:[0073302] MiB:[00286] percent[016.07]
node:[3] pages:[0226674] MiB:[00885] percent[049.70]
[vg-db0036(26986)]
node:[0] pages:[0189318] MiB:[00739] percent[041.84]
node:[1] pages:[0138542] MiB:[00541] percent[030.62]
node:[2] pages:[0009930] MiB:[00038] percent[002.19]
node:[3] pages:[0114656] MiB:[00447] percent[025.34]
[vg-db0035(27029)]
node:[0] pages:[0035075] MiB:[00137] percent[007.73]
node:[1] pages:[0266316] MiB:[01040] percent[058.66]
node:[2] pages:[0020798] MiB:[00081] percent[004.58]
node:[3] pages:[0131779] MiB:[00514] percent[029.03]

[vg-db0034(27062)]
node:[0] pages:[0173804] MiB:[00678] percent[038.37]
node:[1] pages:[0093313] MiB:[00364] percent[020.60]
node:[2] pages:[0030831] MiB:[00120] percent[006.81]
node:[3] pages:[0155011] MiB:[00605] percent[034.22]
[vg-db0033(27100)]
node:[0] pages:[0265909] MiB:[01038] percent[058.71]
node:[1] pages:[0062230] MiB:[00243] percent[013.74]
node:[2] pages:[0044257] MiB:[00172] percent[009.77]
node:[3] pages:[0080547] MiB:[00314] percent[017.78]
[vg-db0032(27138)]
node:[0] pages:[0025163] MiB:[00098] percent[005.52]
node:[1] pages:[0113478] MiB:[00443] percent[024.91]
node:[2] pages:[0127552] MiB:[00498] percent[028.00]
node:[3] pages:[0189330] MiB:[00739] percent[041.56]
[vg-db0031(27182)]
node:[0] pages:[0011550] MiB:[00045] percent[002.55]
node:[1] pages:[0083236] MiB:[00325] percent[018.40]
node:[2] pages:[0100223] MiB:[00391] percent[022.15]
node:[3] pages:[0257437] MiB:[01005] percent[056.90]
[vg-db0030(27215)]
node:[0] pages:[0144517] MiB:[00564] percent[031.87]
node:[1] pages:[0056723] MiB:[00221] percent[012.51]
node:[2] pages:[0080227] MiB:[00313] percent[017.69]
node:[3] pages:[0171986] MiB:[00671] percent[037.93]
[vg-db0029(27253)]
node:[0] pages:[0052847] MiB:[00206] percent[011.65]
node:[1] pages:[0097325] MiB:[00380] percent[021.46]
node:[2] pages:[0051285] MiB:[00200] percent[011.31]
node:[3] pages:[0251995] MiB:[00984] percent[055.57]

Memory
scattered

across nodes
for all VMs

6

 Analysis – What went wrong?

• Why is memory scattered?
– Linux kernel CPU scheduler NUMA policies:

• Current policies work well for short-lived tasks:
– Initial placement in least loaded Node
– Idle CPUs look for tasks to steal
– Periodic, timer based load balances
– CPUs can steal tasks from other CPUs, but scope is limited:

» Only sibling thread most often
» Sibling cores less often
» All logical CPUs in system even less often

• Long lived tasks (like VMs!) do not work well under current policies
– Load balances with large scopes of CPUs to steal from (whole system)

eventually do happen, scattering tasks for a VM across system
– VM Memory is faulted in the same node where the vCPU is running, so as

vCPUs run across the system, memory is also faulted in across the system
– No policy to keep tasks in a group “close” and no policy to “bulk-move”

these tasks to balance the CPU load
– No influence from current memory placement for tasks

7

 User-space VM balancer

 Proof-of-Concept: A first attempt at optimizing VM placement to promote node-local
CPU-memory communication

 Requires cpuset cgroups (works well with libvirt)
– Cpuset can migrate cpus and memory

 User-space perl program (vmbalanced) performs the following:
– Monitor cgroups, discover new VMs, do initial VM to NUMA node placement
– Every 5 seconds analyzes CPU load and attempts to re-balance VMs

 What this does not yet do:
– Does not handle really large VMs (ones that would not fit in a single node)
– Does not currently overcome memory capacity issues

• Current tests have enough host memory to not make this a problem
• Trying to keep the first pass at this simple
• Obviously needs to be addressed

8

User-space VM balancer

Check /cgroup/cpuset/libvirt/qemu
for new groups

Randomly assign node for new VM

Sleep for 5 seconds

Collect system utilization data:
system nr_running

per-node nr_running
per-node load (nr_running/nr_cpus)
system load (nr_running/nr_cpus)

For each NUMA node:
For each VM in node:

Get per-VM nr_running

New
group?

Identify node with highest & lowest
nr_running

Are all of the following true?
a) nr_running_high – nr_runnig_low >=2

b) load_high / load_low >1.1
c) load_high >1.0

Select a VM from node_high and
move to node_low (all done via

cpusets)

START

N

Y

Y

N

9

 Results with VM Balancer

• 40 VMs running dbench:
– MXH 22919 MB/sec
– KVM, no balancer: 14541 MB/sec
– KVM, with balancer: 18771 MB/sec (29% improvement!)
– KVM, manual binding (10 VMs per node) 18896 MB/sec

• About the same throughput as balancer and the best we could expect for
balancer

– This test is actually not that challenging
• Initial placement gets it mostly right
• Only a few VM migrations necessary during dbench run
• Regardless, a simple algorithm can make a dramatic difference

– Perf stats:
• Off-node memory accesses (lower is better):

– No balancer: 217.6 M/sec
– Balancer: 6.2 M/sec
– Manual Binding: 0.9 M/sec

• Instructions per cycle (higher is better)
– No Balancer: 0.293
– Balancer: 0.374
– Manual Binding: 0.374

10

After a few iterations the
VMs are balanced

Results with VM Balancer (balancer output)
[Mon Aug 8 22:12:46 CDT 2011]
node nr_running nr_cpus load imbalance VMs(nr_running)
node0 37 20 1.850000 -008.64 vg-db0030: 4 vg-db0038: 4 vg-db0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 4 vg-db0028: 4 vg-db0010: 4
node1 44 20 2.200000 0008.64 vg-db0018: 5 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 5 vg-db0014: 4 vg-db0027: 3 vg-db0011: 5 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4
node2 52 20 2.600000 0028.40 vg-db0020: 4 vg-db0006: 4 vg-db0032: 5 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 5 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005:
5 vg-db0008: 5
node3 29 20 1.450000 -028.40 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0013: 5 vg-db0009: 4 vg-db0033: 5 vg-db0029: 4
all 162 80 2.025000 0000.00

The nr_running_high[52], nr_running_low[29], nr_running_diff[23], load_high[2.600000], load_low[1.450000], load_ratio[1.792980]
moving [vg-db0020] from node [node2] to node [node3]
VM migration elapsed time: 6.905896

[Mon Aug 8 22:12:56 CDT 2011]
node nr_running nr_cpus load imbalance VMs(nr_running)
node0 37 20 1.850000 -008.64 vg-db0030: 4 vg-db0038: 5 vg-db0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 5 vg-db0028: 4 vg-db0010: 4
node1 43 20 2.150000 0006.17 vg-db0018: 4 vg-db0003: 5 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 5 vg-db0035: 4
node2 50 20 2.500000 0023.46 vg-db0006: 4 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 5 vg-db0008:
4
node3 32 20 1.600000 -020.99 vg-db0022: 4 vg-db0039: 4 vg-db0025: 5 vg-db0020: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 5
all 162 80 2.025000 0000.00

The nr_running_high[50], nr_running_low[32], nr_running_diff[18], load_high[2.500000], load_low[1.600000], load_ratio[1.562402]
moving [vg-db0006] from node [node2] to node [node3]
VM migration elapsed time: 4.228818

[Mon Aug 8 22:13:04 CDT 2011]
node nr_running nr_cpus load imbalance VMs(nr_running)
node0 36 20 1.800000 -011.11 vg-db0030: 4 vg-db0038: 5 vg-db0016: 4 vg-db0002: 4 vg-db0026: 5 vg-db0037: 4 vg-db0023: 4 vg-db0028: 5 vg-db0010: 4
node1 44 20 2.200000 0008.64 vg-db0018: 4 vg-db0003: 4 vg-db0036: 4 vg-db0007: 5 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 5
node2 44 20 2.200000 0008.64 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 38 20 1.900000 -006.17 vg-db0022: 5 vg-db0039: 5 vg-db0025: 5 vg-db0020: 4 vg-db0006: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4
all 162 80 2.025000 0000.00

The nr_running_high[44], nr_running_low[36], nr_running_diff[8], load_high[2.200000], load_low[1.800000], load_ratio[1.222154]
moving [vg-db0018] from node [node1] to node [node0]
VM migration elapsed time: 4.913064

[Mon Aug 8 22:13:11 CDT 2011]
node nr_running nr_cpus load imbalance VMs(nr_running)
node0 41 20 2.050000 -004.65 vg-db0018: 4 vg-db0030: 4 vg-db0038: 4 vg-db0016: 5 vg-db0002: 4 vg-db0026: 4 vg-db0037: 4 vg-db0023: 4 vg-db0028: 5 vg-db0010: 4
node1 45 20 2.250000 0004.65 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 5 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4
node2 46 20 2.300000 0006.98 vg-db0032: 4 vg-db0017: 4 vg-db0001: 4 vg-db0034: 4 vg-db0024: 5 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 40 20 2.000000 -006.98 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0020: 4 vg-db0006: 4 vg-db0013: 4 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4
all 172 80 2.150000 0000.00

The nr_running_high[46], nr_running_low[40], nr_running_diff[6], load_high[2.300000], load_low[2.000000], load_ratio[1.149943]
moving [vg-db0032] from node [node2] to node [node3]
VM migration elapsed time: 5.302738

[Mon Aug 8 22:13:20 CDT 2011]
node nr_running nr_cpus load imbalance VMs(nr_running)
node0 41 20 2.050000 -001.20 vg-db0018: 4 vg-db0030: 4 vg-db0038: 4 vg-db0016: 4 vg-db0002: 4 vg-db0026: 4 vg-db0037: 5 vg-db0023: 4 vg-db0028: 4 vg-db0010: 4
node1 41 20 2.050000 -001.20 vg-db0003: 4 vg-db0036: 4 vg-db0007: 4 vg-db0004: 4 vg-db0014: 4 vg-db0027: 4 vg-db0011: 4 vg-db0012: 4 vg-db0021: 4 vg-db0035: 4
node2 43 20 2.150000 0003.61 vg-db0017: 4 vg-db0001: 5 vg-db0024: 4 vg-db0034: 4 vg-db0019: 4 vg-db0031: 4 vg-db0040: 4 vg-db0015: 4 vg-db0005: 4 vg-db0008: 4
node3 41 20 2.050000 -001.20 vg-db0022: 4 vg-db0039: 4 vg-db0025: 4 vg-db0020: 4 vg-db0006: 4 vg-db0032: 4 vg-db0013: 5 vg-db0033: 4 vg-db0029: 4 vg-db0009: 4
all 166 80 2.075000 0000.00

The nr_running_high[43], nr_running_low[41], nr_running_diff[2], load_high[2.150000], load_low[2.050000], load_ratio[1.048729]

When 40 VMs start their
workloads there is some

load imbalance

11

 Results with VM Balancer

• Let's try something more challenging

• Use 20 of the 40 VMs: select 20 VMs from just the first 2 NUMA nodes
– Immediately following the 40 VM test

• At the beginning of the test, 20 VMs will saturate the CPU from first 2 nodes

• To get the best throughput, ½ of these VMs will need to be migrated
– MXH 19164 MB/sec
– KVM, no balancer: 15298 MB/sec
– KVM, with balancer: 19374 MB/sec

• Slightly better than MXH!
– KVM, manual binding (10 VMs per node) 9096 MB/sec

• Good example of why manual binding has limited use (VMs are stuck on first
two nodes)

– Perf stats:
• Off-node memory references (lower is better):

– No balancer: 212.2 M/sec
– Balancer: 5.8 M/sec
– Manual Binding: 0.7 M/sec

• Instructions per cycle (higher is better)
– No Balancer: 0.307
– Balancer: 0.395
– Manual Binding: 0.346

12

 Results with VM Balancer (Summary)

• 40 VM test
– Out of the box performance improved by 29%
– NUMA optimization relatively easy, as initial placement does most of the work
– Relatively few balance operations needed to get even balance
– Can achieve same throughput as manual binding
– Still need another 29% to get parity with MXH

• CPU is over-committed
– vCPU run time can affect cache warmth, probably worth investigating
– Lock-holder preemption might be occurring

• 20 VM test
– Out-of-the box performance improved by 26%
– Performance parity with MXH
–

13

 More work to do

• Re-balance to correct memory imbalance
– Probably not too hard if there is not a CPU constraint
– Much harder when you are trying to fix memory and CPU imbalance
– Instead of simply moving a single VM one at a time, may require swapping (1 for 1, 1

for 2 or 3) VMs across nodes to get good balance

• Re-balance to optimize KSM for NUMA locality
– If a set of VMs have a lot of shared pages, ideally they should be on the same node

• VM migration probation period (to correct a CPU imbalance)
– If you are concerned the need for CPU is temporary, don't waste a lot of cycles

moving VM memory around
– Move CPUs first, confirm this was not a very short term need, then move VM

memory. If the need for CPU goes away, then revert the CPU move.
– Or, just always lazily move memory (but not easy to implement)

• When moving VMs pick a VM which has lowest resident memory/CPU-usage
– Moving memory is costly, get the best bang/buck by picking VMs that are “easy” to

move

• Handle really big VMs
– Big VMs can require CPU and memory from more than one node
– Create multi-Node VMs, with CPU and memory per VM-node
– Treat each VM-node as a small VM in the host, move VM-nodes independently (not

really compatible with CPU sets, need to migrate individual memory mappings)

14

 Kernel or User?

• Should this work move to kernel scheduler?
– Pros

• More control – scheduler can generally react to changes much faster
• Opportunity to do with other things like gang scheduling, entitlement guarantees,

latency guarantees for virtualization
•

– Cons
• You have to actually get it included in scheduler code
• Much higher risk and probably requires a lot more testing

– Could lower the speed at which changes could be made and delivered to
users

15

 Questions?

16

 Backup Slides

diff -Naurp linux-2.6.39/fs/proc/stat.c linux-2.6.39b/fs/proc/stat.c
--- linux-2.6.39/fs/proc/stat.c 2011-05-18 23:06:34.000000000 -0500
+++ linux-2.6.39b/fs/proc/stat.c 2011-07-20 13:51:45.376004463 -0500
@@ -91,7 +91,7 @@ static int show_stat(struct seq_file *p,
 guest_nice = kstat_cpu(i).cpustat.guest_nice;
 seq_printf(p,
 "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu "
- "%llu\n",
+ "%llu %lu %lu\n",
 i,
 (unsigned long long)cputime64_to_clock_t(user),
 (unsigned long long)cputime64_to_clock_t(nice),
@@ -102,7 +102,9 @@ static int show_stat(struct seq_file *p,
 (unsigned long long)cputime64_to_clock_t(softirq),
 (unsigned long long)cputime64_to_clock_t(steal),
 (unsigned long long)cputime64_to_clock_t(guest),
- (unsigned long long)cputime64_to_clock_t(guest_nice));
+ (unsigned long long)cputime64_to_clock_t(guest_nice),
+ nr_running_cpu(i),
+ cpu_load(i));
 }
 seq_printf(p, "intr %llu", (unsigned long long)sum);

diff -Naurp linux-2.6.39/include/linux/sched.h linux-2.6.39b/include/linux/sched.h
--- linux-2.6.39/include/linux/sched.h 2011-05-18 23:06:34.000000000 -0500
+++ linux-2.6.39b/include/linux/sched.h 2011-07-20 13:50:27.096004478 -0500
@@ -137,9 +137,11 @@ extern int nr_threads;
 DECLARE_PER_CPU(unsigned long, process_counts);
 extern int nr_processes(void);
 extern unsigned long nr_running(void);
+extern unsigned long nr_running_cpu(unsigned long cpu);
 extern unsigned long nr_uninterruptible(void);
 extern unsigned long nr_iowait(void);
 extern unsigned long nr_iowait_cpu(int cpu);
+extern unsigned long cpu_load(int cpu);
 extern unsigned long this_cpu_load(void);

diff -Naurp linux-2.6.39/kernel/sched.c linux-2.6.39b/kernel/sched.c
--- linux-2.6.39/kernel/sched.c 2011-05-18 23:06:34.000000000 -0500
+++ linux-2.6.39b/kernel/sched.c 2011-07-20 13:50:14.746004482 -0500
@@ -3017,6 +3017,11 @@ unsigned long nr_running(void)
 return sum;
 }

+unsigned long nr_running_cpu(unsigned long cpu)
+{
+ return cpu_rq(cpu)->nr_running;
+}
+
 unsigned long nr_uninterruptible(void)
 {
 unsigned long i, sum = 0;
@@ -3061,6 +3066,12 @@ unsigned long nr_iowait_cpu(int cpu)
 return atomic_read(&this->nr_iowait);
 }

+unsigned long cpu_load(int cpu)
+{
+ struct rq *this = cpu_rq(cpu);
+ return this->cpu_load[0];
+}
+
 unsigned long this_cpu_load(void)
 {
 struct rq *this = this_rq();

• /proc/stat provide nr_running per CPU
– necessary for user space VM balancer
– cpu_load also made available, but not used at this time

17

 Backup Slides

• CPU utilization of 20 VM test (20 VMs initially on just first 2 NUMA nodes)
– First minute indicates VMs moved to 2 unused NUMA nodes and eventually using

CPU from all nodes
– After first minute, a couple periods of lower CPU might indicate incorrect balances

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

