oVirt and Gluster hyper-converged!
HA solution for maximum resource utilization

21st of Aug 2015

Martin Sivák
Senior Software Engineer
Red Hat Czech
Agenda

- (Storage) architecture of oVirt
- Possible failure points in standard oVirt setup
- Hosted engine refresher and improvements
- Gluster in a nutshell
- Putting it all together – hyper converged infrastructure
 - Architecture
 - Setup
 - Management
oVirt and its Architecture

oVirt is a virtualization platform to manage virtual machines, storage and networks

- **Engine (ovirt-engine)**
 Manages the oVirt hosts, and allows system administrators to create and deploy new VMs

- **Host Agent (VDSM)**
 oVirt engine communicates with VSDM to manage the VMs, storages and networks
oVirt storage

- **Storage Domains**
 - Centralized storage system (images, templates, etc.)
 - A standalone storage entity
 - Stores the images and associated metadata
 - Only real persistent storage for VDSM
 - Used for synchronization (sanlock)

- **Storage types**
 - NFS, FCP, iSCSI
 - Gluster
Possible failure points

- Engine machine
 - Single point of failure
 - Cluster paralyzed without engine

- Storage connection
 - Data safe but unreachable
 - All synchronization in oVirt is storage based
 - neither NFS nor iSCSI provide redundancy
Removing failure points

- Single ovirt-engine host manages the whole datacenter
 - Using a VM to run ovirt-engine reduces HW failure risks
 → Hosted Engine

- Single storage access infrastructure provides data
 - Data itself are safe – can be replicated using RAID
 - Infrastructure is not – distributed access mechanism is needed
 → Gluster
Hosted engine

- Management running inside a VM
- Can be migrated to a different node
- High availability
- Special agent for monitoring
- Storage based synchronization
- Bootstrap deployment needed
Improvements needed for HC

- GlusterFS support re-added to setup
 - With gfapi support!
- oVirt-engine appliance
 - preconfigured management VM
 - cloud-init based customization
- Shared configuration
 - all nodes see the same configuration data
 - upgrade path from oVirt 3.5
- Management GUI for the oVirt-engine VM and HE
GlusterFS and its Architecture

- GlusterFS is a general purpose scale-out distributed file-system supporting thousands of clients.
- Aggregates storage exports over network interconnect to provide a single unified namespace.
- File-system completely in userspace, runs on commodity hardware.
- Layered on disk file systems that support extended attributes.

Multithreaded access to data.

Gbe / 10 Gbe / InfiniBand

GlusterFS Native
NFS
CIFS
HTTP
WebDAV
FTP

Global Namespace

Direct Attached

JBOD

SAN

Flexible Back-end

Clustered Storage Building Blocks
GlusterFS Bricks

- A brick is an export directory located on a specific node (e.g. host-01:/srv/fs1/brick1)
- Each brick inherits limits of the underlying file-system
- No limit on the number bricks per node (as best-practice each brick in a cluster should be of the same size)
GlusterFS Volumes

- A volume (the mountable entity) is a logical collection of bricks
- Bricks from the same node can be part of different volumes
- Different types of Volumes
 - Distribute, Stripe, Replicate (+ combinations), **Quorum**
- Type of a volume is specified at the time of volume creation and determines how and where data is placed

```
host01:/srv/fs1/brick1
host02:/srv/fs1/brick1
host03:/srv/fs1/brick1
```
QEMU libgfapi Support

- GlusterFS exposes APIs for accessing Gluster volumes
- Reduces context switches
QEMU libgfapi Support

- GlusterFS exposes APIs for accessing Gluster volumes
- Reduces context switches

libgfapi Access

But see: https://bugzilla.redhat.com/show_bug.cgi?id=1247933
Putting it all together

- oVirt cluster
- Glusterfs backed storage domain
- Hosted engine to maintain HA of the management
- Pre-configured management using an OVF image

Are you feeling lucky?

Due to unexpected issues the automatic HC deployment was removed from 3.6. It is still possible to configure most of the HC setup manually.
Hyperconverged oVirt – GlusterFS

- The Data Center nodes are used both for virtualization and serving replicated images from the GlusterFS Bricks
- Engine runs inside a VM (Hosted Engine)
- The boxes can be standardized (hardware and deployment) for easy addition and replacement
- Support for both scaling up, adding more disks, and scaling out, adding more hosts
Hyper converged setup – ingredients

- at least 3 virtualization capable hosts (CentOS 7.1+)
- 10 GB of temporary space on the primary host
- two separate partitions for data (20GB+) on all hosts
- DHCP configured to map a MAC address to a fixed IP
- DNS configured with A and PTR names for the IP
- oVirt release package installed on all hosts

 http://resources.ovirt.org/pub/ovirt-master-snapshot-static/rpm/el7/noarch/ovirt-release-master-001-0.9.master.noarch.rpm

- Physical console on the primary host or network access and screen package installed
Gluster volume setup

- **Replica 3 volume required**

  ```
  # execute on all hosts
  yum install glusterfs-server
  systemctl enable glusterfs-server
  systemctl start glusterfs-server
  mkdir -p /srv/gluster/hosted-engine/brick
  
  # Execute on the first host you are going to deploy
  gluster peer probe <address another host>  # for each host in the HC cluster
  gluster volume create hosted-engine replica 3 \
  <host1>:/srv/gluster/hosted-engine/brick \
  <host2>:/srv/gluster/hosted-engine/brick \
  <host3>:/srv/gluster/hosted-engine/brick \
  ...
  gluster volume start hosted-engine
  ```

- **This step will be automated by the setup tool once remaining bugs are solved**
Gluster volume setup – cont.

```bash
# Execute on the first host you are going to deploy
gluster volume set hosted-engine cluster.quorum-type auto
gluster volume set hosted-engine network.ping-timeout 10
gluster volume set hosted-engine auth.allow *
gluster volume set hosted-engine group virt
gluster volume set hosted-engine storage.owner-uid 36
gluster volume set hosted-engine storage.owner-gid 36
gluster volume set hosted-engine server.allow-insecure on
```
yum install -y ovirt-engine-appliance ovirt-hosted-engine-setup
yum install -y vdsm-gluster glusterfs-server
ovirt-hosted-engine-setup
...
Please specify the storage you would like to use: glusterfs
Please specify the full shared storage connection path to use: <ip1>:/hosted-engine
[INFO] GlusterFS replica 3 Volume detected
...
Please specify the device to boot the VM from [disk]: disk
The following appliance have been found on your system:
 [1] – The oVirt Engine Appliance image (OVA) – 20150802.0-1.el7.centos
Please select an appliance (1, 2): 1
...
Please specify the memory size of the appliance in MB: 16384
Would you like to use cloud-init to customize the appliance on the first boot?: Yes
Please provide the FQDN you would like to use for the engine appliance: <engine fqdn>
...
Hosted engine - recipe

You may specify a unicast MAC address for the VM: <MAC assoc. with the FQDN>

--- Configuration Preview ===--

Please confirm installation settings: Yes

- Quite lot of questions and lines were omitted for brevity, but the answers to those are not “too important” for successful installation of hosted engine.
- You can watch a full appliance installation (using NFS storage) video on YouTube: https://www.youtube.com/watch?v=ODJ_UO7U1WQ
Finishing setup of the oVirt cluster

- You should now have a running single node oVirt
- Log in to the management
- Make sure Gluster support is enabled
- Add remaining nodes
- Create and add the main storage domain
Enabling GlusterFS

- Gluster Service support is located in the Cluster properties
- Deploy Hosts with GlusterFS Server support
- Enable Bricks and Volume Management from oVirt WebAdmin and REST-API
- Engine is not taking in consideration GlusterFS on Virtualization Power-Saving policies and Fencing yet

KVM Forum Seattle, Aug 2015
Adding additional nodes

- Simple checkbox during in the Add host dialog
- Host deploy script does everything else auto-magically
Adding Gluster storage

- It is possible to create and manage Gluster Volumes from WebAdmin and using the REST-API

- Volume Profiling
- Volume Capacity Monitoring
Done!

Now just add the volume as a new storage domain, wait for data center to initialize and enjoy your new HA setup.

The next important topic is management ...
Engine's VM management

- Support for editing the Hosted Engine VM
- Memory and CPU allocation, network configuration
- Work in progress..

- Distributed to all hosted engine nodes using OVF file on the storage domain
- Hosted engine daemons pick up the configuration when the management VM is restarted
Hosted engine management

- Reporting configuration
 - State transitions
 - SMTP details
- Timeout configuration
 - Allowed downtime before forced recovery
- Host scoring constants and rules
What is missing from oVirt 3.6?

- Automated hyper-converged setup
 - Removed at the last moment because of unresolved issues
- Full support for managing the oVirt engine VM
 - Missed the feature deadline, will be available soon
- Hosted engine configuration UI

- Support for multiple Gluster brick servers not ideal
 - issue with VM startup – see qemu bug #1247933
 - but HA properly maintained during operation
THANK YOU!

http://wiki.ovirt.org/wiki/Category:SLA
users@ovirt.org
devel@ovirt.org

#ovirt irc.oftc.net