Beyond kvm.ko

Avi Kivity
avi@qumranet.com

KVM Developers Forum
June 2008
Agenda

- Large pages
- Containers & Isolation
- Scheduling
- Swapping
- Storage
- Conclusions
Large pages

- 4KB page tables consume memory
 - 2MB per 1GB RAM
 - Leads to cache pressure on TLB intensive workloads
 - One TLB-induced cache miss per random access

- NPT/EPT make the problem worse
 - 4MB per 1GB
 - Two TLB-induced cache misses per random access

<table>
<thead>
<tr>
<th>Shadow memory access penalties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest pages</td>
<td>Host pages</td>
</tr>
<tr>
<td>4KB</td>
<td>Any</td>
</tr>
<tr>
<td>2MB</td>
<td>4KB</td>
</tr>
<tr>
<td>2MB</td>
<td>2MB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2DP memory access penalties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest pages</td>
<td>Host pages</td>
</tr>
<tr>
<td>4KB</td>
<td>4KB</td>
</tr>
<tr>
<td>4KB</td>
<td>2MB</td>
</tr>
<tr>
<td>2MB</td>
<td>4KB</td>
</tr>
<tr>
<td>2MB</td>
<td>2MB</td>
</tr>
</tbody>
</table>
Easy solution: use large host pages to back guest memory
 - Just 4KB per 1GB (doubled for xPT)

New problems
 - Provisioning: hard to configure Linux for large pages
 - Okay for dedicated virtualization host
 - Doesn't swap
 - Kills overcommit
 - Won't balloon
Fixing large pages

- **Fixes**
 - Memory defragmentation
 - Transparent coalescing/fragmentation of large pages
 - Large page swapping (?!)
 - Large page ballooning

- **Problems**
 - Opposition from Linus
 - Will increase core VM complexity
Containers & Isolation

- Reduce the impact of one guest on others
- Scheduler groups
 - Treat a group of tasks as a unit for the purpose of allocating resources
- Scheduler caps and guarantees
 - Allow SLAs instead of best effort
- Memory containers
 - Account each page to its container
 - Allows preferentially swapping some guests
- I/O accounting
 - Each I/O in flight is correctly accounted to initiating task
 - Including swap activity!
 - Important for I/O scheduling
 - Important for troubleshooting
Scheduling

- **Gang scheduling**
 - Schedule a guest iff there are processors available for all vcpus
 - Prevents spinning in spinlocks, IPIs, or other busy-wait scenarios

- **Paravirtualized spinlocks, IPIs**
 - Guest tells host when it spins
 - Host can reallocate resources
Swapping & overcommit

- Ballooning is too simplistic
 - Host depends on guest ability to free memory
 - What if the guest is slow? Or hung? Or malicious?

- Swapping is too slow
 - Host estimate of which page to swap may be inaccurate
 - Always need to write out data
 - Even if the guest can recreate it
 - Guest hangs when paging in data
Swapping fixes

- Simple fix: don't swap out zeroed pages
- Complex fix: guest/host cooperation
 - Guest tells host which pages need not be saved
 - Host tells guest which pages were not saved
 - Host tells guest which pages are not present
- Can steal most from s90
- Problem: some of this is incredibly complex
Many similar guests cause a lot of duplicate storage

Current solution: baseline + delta images

Delta images only a partial solution
 - Deltas degrade over time
 - Needs planning
 - Won't work when P2Ving an existing installation
 - Disk-in-file is overhead
Storage fixes

- **Block-level deduplication**
 - Filesystem or block device looks for identical blocks
 - ... and consolidates them
 - Can be done as a background task
 - Btrfs seems well prepared
 - Reverse mappings
 - Snapshots

- **Hostfs + file-based deduplication**
 - No more virtual block device
 - Guest filesystem is a host directory
 - Host can carry out file dedup in the background
 - Requires changes in guest
Conclusions

- A lot of work remains besides the core hypervisor
- Much to be done on the host level
- Some on the guest level
- Having the host features useful for non-virtualization workloads will be important for acceptance
- We won't be out of work anytime soon
Thank You