

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 2

Memory overcommit: Why? How?

Design approach

Rapid prototyping by simulation

Conclusion

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

In many virtualization scenarios, resource overcommit is welcome.

Users understand that performance will be impacted when over-committing.

CPUs GPUs Network

bandwidth

Storage

capacity

| 3

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

In many virtualization scenarios, resource overcommit is welcome.

Users understand that performance will be impacted when over-committing.

CPUs GPUs Network

bandwidth

Storage

capacity

Memory

| 4

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 5

This host is “full”.

But in some cases the VMs may not need all their memory all the time.

➢ e.g. bursty workloads where VMs are often idle

➢ e.g. the user who demands a 16 GB VM but will only ever use 4 GB

If we need to, we should be able to find enough room in which to start another VM

➢ e.g. to cope with unforeseen short-term capacity requirements

Memory hotplug/unplug Memory ballooning Hypervisor paging

| 6

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 7

Add and remove virtual DIMMs

Issues

➢ Removing memory is hard, requiring OS support, so will not work for all VMs

➢ No guarantee over timely release

➢ Administrator needs to indicate how much memory it is “safe” to remove

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 8

Reclaim unused pages from running VMs

Issues

➢ Requires an in-guest driver, so VMs must be trusted to co-operate

➢ VM reboot resets balloon, so bulk reboots could cause OOM

➢ No guarantee over timely release

➢ Administrator needs to indicate how much memory it is “safe” to remove
M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 9

Shift some of a VM’s memory into backing store

Issues

➢ Slow to swap pages back in when needed

➢ Requires paging infrastructure in hypervisor

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 10

Memory overcommit: Why? How?

Design approach

Rapid prototyping by simulation

Conclusion

Automatic sizing OS agnostic FairAgentless Disable-able

| 11

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

Use hypervisor paging

✓ Hypervisor paging is straightforward with Linux

✓ No OS co-operation required

✓ No in-guest agent required

 Won’t work with VMs with PCI-passthrough

 Cannot use memory allocated from hugetlbfs

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 12

Use feedback from the system to automatically size VMs

✓ No guesswork or manual configuration of memory sizes

✓ Minimise amount of swapping needed

Each VM sits in two cgroups:

1. A per-VM cgroup. Its memory size is controlled by adjusting memory.limit_in_bytes.

2. For VMs with overcommit enabled, a host-wide cgroup with swap enabled.

For VMs with overcommit disabled, a host-wide cgroup with swap disabled.

Use a per-host swap device.

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 13

A “squeezer” daemon maintains an estimate of each VM’s working set.

The squeezer estimates the VM’s working set size from qemu major fault rates1

➢ Low fault rate → reduce estimate

➢ High fault rate → increase estimate

The squeezer sets the VM’s cgroup memory limit to this estimate.

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 14

1 by observing majflt + cmajflt from qemu process’s /proc/<pid>/stat file

squeezer

VM

VM cgroup
memory limit

qemu major
fault rate

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 15

Configured VM memory size

Working set estimate

Actual working set

time

m
em

o
ry

High fault rate
so increase estimate

Low fault rate
so reduce estimate

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 16

Configured VM memory size

Working set estimate

Actual working
set

time

m
em

o
ry

Bad decision
to squeeze 

Bad decision
to squeeze 

What if several VMs on a host increase their working set at around the same time?

If the sum of VMs’ working sets exceeds host memory, the host is overcommitted.

 VM performance will be heavily impacted.

 Computation of working set estimates cannot occur.

We may be able to eventually recover by migrating VMs to other hosts.

But we want to avoid this scenario whenever possible.

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 17

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 18

Configured VM memory size

Working set estimate

Actual working
set

time

m
em

o
ry

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 19

Memory overcommit: Why? How?

Design approach

Rapid prototyping by simulation

Conclusion

Goal: maximise squeezing while minimising performance degradation

There are several important parameters for the squeezer, including

1. How quickly should the squeezer react to an increase in fault rate?

2. When the fault rate is low, when should the squeezer try decreasing the cgroup limit?

3. By what amount should the squeezer increase or decrease the cgroup limit?

4. What length of time window should be used for the long-term estimate?

How can we find an optimal squeezing algorithm?

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 20

1. Monitor

Monitor real guest memory usage

patterns under real-world workloads

2. Model

Construct a model that can quantify

the impact of a squeezer algorithm on

a VM workload

3. Simulate

Rapidly evaluate possible squeezer

algorithms

| 21

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

Approach:

We used idle page tracking1 to monitor the

page-accessing activity of guests under real

world workloads.

The file /sys/kernel/mm/page_idle/bitmap

contains one bit per physical page on the

host.

When a page is accessed, the

corresponding bit is cleared.

We periodically sample the pages

corresponding to a VM’s memory, resetting

the bits after each sample.

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 22

1 available since Linux 4.3, see
Documentation/mm/idle_page_tracking.txt

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 23

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 24

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 25

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 26

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 27

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 28

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 29

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 30

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 31

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 32

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 33

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 34

A simple model that approximates these three data sets:

➢ Split PFNs into two sets: used and unused

➢ Used pages will be accessed according to a normal distribution

➢ Unused pages will not be accessed

We can model variation over time by varying the model’s parameters.

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 35

We have created psim to simulate a VM performing a workload and measure the amount of work done in a given time

➢ https://github.com/jjd27/psim

For every simulator tick:

➢ Workload determines which page the vCPU accesses

➢ Accessing a free or unmapped page incurs a minor fault, blocking the vCPU from doing work for a short time

➢ Accessing a paged-out page incurs a major fault, blocking the vCPU from doing work for a prolonged time

➢ vCPU does a unit of work on the page

Simulate Linux memory subsystem behaviour:

➢ Periodically scan memory to update active/inactive lists according to page accesses since last scan

➢ Page out inactive pages if the number of allocated pages exceeds cgroup memory limit

Further reading: Mel Gorman, Understanding the Linux Virtual Memory Manager (chapter 10), http://www.kernel.org/doc/gorman/

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 36

https://github.com/jjd27/psim
http://www.kernel.org/doc/Gorman/

An example workload, looping forever:

➢ Access 50% of pages according to a normal distribution (one page per tick for 100k ticks)

➢ Access 75% of pages according to a normal distribution (one page per tick for 100k ticks)

Run the squeezer algorithm every 1k ticks

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 37

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 38

Memory limit = 64 pages, i.e. 50% of static allocation
Total work done = 436k units of work, i.e. 87.1% efficiency

Algorithm: Keep page limit constant at half the total number of pages

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 39

Average memory limit = 68.9 pages, i.e. 53.8% of static allocation
Total work done = 460k units of work, i.e. 92.0% performance

Algorithm: Reduce/increase limit by 1 page if less/more than 2 major faults in period

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 40

Algorithm: Reduce/increase limit by number of major faults in period

Average memory limit = 71.9 pages, i.e. 56.2% of static allocation
Total work done = 477k units of work, i.e. 95.3% performance

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 41

Average memory limit = 68.4 pages, i.e. 53.4% of static allocation
Total work done = 468k units of work, i.e. 93.5% performance

Algorithm: Reduce/increase limit by number proportional to weighted average of the number of faults since the start

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 42

Average memory limit = 102.7 pages, i.e. 80.2% of static allocation
Total work done = 497k units of work, i.e. 99.4% performance

Algorithm: Hard squeeze until first page fault; soft squeeze if we get fewer than 2 faults in 100 intervals

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

| 43

Memory overcommit: Why? How?

Design approach

Rapid prototyping by simulation

Conclusion

➢ Memory overcommit is beneficial for some use-cases

and workloads

➢ Hypervisor paging does not require guest co-operation

➢ Automatic VM memory sizing avoids administrative

effort and guesswork

➢ A squeezer algorithm can be evaluated using simulation

based on real-world data

➢ A good squeezer algorithm can maintain good levels of

VM performance while squeezing VMs close to their

working set

| 44

M E M O R Y O V E R C O M M I T | K V M F O R U M 2 0 1 8

