Helping Users Maximize VM Performance

Martin Polednik (@mpolednik)
Software Engineer @ Red Hat
The Data

- oVirt databases from sosreports
- ~40,000 virtual machine (VM) definitions
- ~700 clusters*
- ~2,200 hosts
- ~60,000 disks

* oVirt specific entity that consists of hosts, VMs, disks, networks etc. Consider it a scheduling domain.
Machine Types

- clusters "group" VMs by machine type
- updating to a newer cluster is a nontrivial process
NUMA

- soft violation: VM does not fit within some of the host's NUMA nodes
- example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 1
- could be solved by pinning
Soft NUMA Violations

- 17.01% of VM definitions
- The query considered scheduling domains (clusters)
- "there exists a host in the cluster whose NUMA node is smaller than the NUMA node of the VM"
- Worst case in cluster AND host scheduling
NUMA

- hard violation: VM does not fit within any of the host's NUMA nodes
- example: VM 0:NODE 0 doesn't fit within HOST 0:NODE 0 or HOST 0:NODE 1
Hard NUMA Violations

- 9.74% of VM definitions
- scheduling domains were considered
- "there exists a host in the cluster whose NUMA nodes are smaller than the NUMA node of the VM"
- worst case in cluster scheduling
Solution

- warn the user about suboptimal NUMA topology
- easy to determine on the cluster level
- important for specific applications (huge DBs)
- future: create the nodes automatically?
NUMA & CPU pinning

• low adoption, why?
 • no migration (disabled at management level)
 • HA is hard, breaks cluster logic (only HA between subset of hosts)
 • limited scheduling (pin to host)
• can we change that?
NUMA & CPU pinning

- host-passthrough CPU (aka copy features)
- automatically pin CPUs
- e.g. 4 NUMA nodes, 12 CPUs per node
 - node CPU0, CPU1 -> "service" CPUs (emulation thread, IO thread, virt daemons)
 - CPU2 through CPU11 -> compute CPUs
- if #vCPU > 10, ask the user to add a virtual node
- easy to think about RT too!
Hugepages

• platform default + extended sizes
• either preallocated or dynamically allocated
• at least for x86_64 1 GiB (pdpe1gb) preferred, other sizes configurable
• THP is hit or miss performance-wise
Hugepages

- no cluster-level overcommit
- no memory hot(un)plug, limited migration (management layer constraints)
- "hard" resource limit
- NUMA-aware allocation
Hugepages Allocation

- could cause VM start delays
- opt-out at the host level, disabled in scheduler
- reserved hugepages concept (DPDK etc.)

- \(\text{max}(\text{vm_hugepages} - \text{free_hugepages}, 0) \)
L3 cache

- https://git.qemu.org/?p=qemu.git;a=commit;h=14c985cfa6cb177fc01a163d8bcf227b104718c

- QEMU: -cpu foo,l3-cache=on

- libvirt: `<cpu><cache level='3' mode='emulate'/></cpu>`

- Less inter-processor interrupts (IPIs) -> less VMEXITs

- Essential for SAP workloads
Disk Interface

- choice between IDE, VirtIO-blk, VirtIO-SCSI (+ passthrough)
- 3.6, 4.0 defaults to VirtIO-blk, 4.1+ to VirtIO-SCSI
- VirtIO-SCSI controller by default in VMs (hotplug capability) :
- TRIM is important to people!
Disk Interface

Cluster version

- IDE
- VirtIO (blk)
- VirtIO (scsi)

Disks

- 0%
- 25%
- 50%
- 75%
- 100%
IO Threads

- 3.6, 4.0, 4.1 allow specifying # of IO threads
- no hints about which number to use
IO Threads

VMs

0.0% 0.4% 0.8% 1.2%

IO threads

1 2 3 4 10 16
IO Threads

- testing has shown the "sweet spot" to be 1 IO thread
- therefore, oVirt no longer (easily) allows arbitrary numbers
- override via hooks
VirtIO RNG

- "low hanging fruit"
- improves virtually any operation that uses PRNG (e.g. OS installation, GPG key generation)
- optional in 3.6, 4.0, default in 4.1 - no downsides?
VirtIO RNG perf

- virtio-rng
- no virtio-rng

rngtest (sec)
Host Devices

- using real hardware to accelerate the VMs
- GPUs, NICs, NVMe disks
- reduced CPU load
- should still honor NUMA locality
- hard resource limit
Host Devices

HOST 0

NODE 0
32 GiB

GPU 0
GPU 1

NODE 0
32 GiB

GPU 2
GPU 3
Host Devices

- easy to tune numa automatically for simple case (all host devices within single numa node)

- more complicated if host devices origin from multiple NUMA nodes
Network

- VirtIO is the preferred "flexibility" choice
- SR-IOV for performance/NFV, migration enabled
- emulated NICs for compatibility
- looks good as it is
Migration Performance

• relevant for clusters

• maximum downtime incremented in steps

• limit number of inbound/outbound migrations to avoid oversaturated network

• post copy - needs to be enabled explicitly, success chance dependent on user's network
 • don't expect high bandwidth, redundant network in every case
Migration Performance

<table>
<thead>
<tr>
<th></th>
<th>Legacy</th>
<th>Minimal downtime</th>
<th>Suspend workload if needed</th>
<th>Post copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GiB RAM</td>
<td>Failed After 12 min</td>
<td>41 min 31 sec</td>
<td>31 min 42 sec</td>
<td>25 min</td>
</tr>
<tr>
<td>20 GiB RAM, 50 msec latency</td>
<td>Failed After 17 min</td>
<td>47 min 24 sec</td>
<td>1 h 12 min 31 sec</td>
<td>48 min 10 sec</td>
</tr>
<tr>
<td>40 VM, 1 GiB RAM</td>
<td>AVG: 1 min 40 sec</td>
<td>AVG: 1 min 50 sec</td>
<td>AVG: 4 min</td>
<td>AVG: 1 min 30 sec</td>
</tr>
</tbody>
</table>
KSM

- hugetlbfs not scanned by ksmd
- no overcommit for VMs that are considered high performance
- waste of CPU cycles?
Devices

- graphics, video, USBs, smartcard, watchdog, balloon

- do we need them?

- no known (to us) performance effects

- removing them shouldn't hurt

- no data though
Devices

• some functionality tradeoffs (ballon and memory hot(unplug) in the future)

• running headless
 • no graphics
 • no video
 • no spice/vnc, just console connectivity
 • console proxy to connect to the guests
Implementation

- do as many "safe" tweaks as possible
 - with a single NUMA node, go for device locality
- warn about suboptimal configuration
 - NUMA violation => suggest a vNODE
- inform about tradeoffs
 - VirtIO-blk vs VirtIO-SCSI
- allow user to override as many tunes as possible!
Benchmarks

• synthetic benchmarks show 0-15 % performance improvement

• pgbench ~ 10 % improvement

• pts/encloade-flac ~ 0.1 % improvement

• more data in the future as reports come in
Summary

- align everything with NUMA topology
- suggest pinning where possible (incl. IO thread, emulator thread)
- suggest hugepages
- expose L3 cache
- VirtIO-RNG
- host devices (hardware) > VirtIO > emulation
- remove unneeded devices
Summary

• benchmark your workload and tune accordingly!
Questions?

Thank you!
Slides & Blog @ https://mpolednik.github.io/