Virgil3D: a virtio based 3D GPU

Dave Airlie
<airlied@redhat.com>
Red Hat, Brisbane.
Virgil3D

- Research project
 - Initial implementation just to see
- Focus
 - Work out the 3D side of a virtio GPU
 - Get familiar with virtio and qemu code
- Based on Mesa project Gallium 3D
- Linux focused
Other projects

- **Vgallium**
 - relied on gallium drivers in host
 - Old version of gallium
 - Unmaintained

- **VirtualBox GL passthrough**
 - GL based is too large a surface area
 - Unknown security implications

- **Vmware SVGAII**
 - Closed source
 - Based on DX9 so limited capability
Virtio interface

- Single virtio ring
 - Context management
 - Create, Destroy, Attach Resource, Detach Resource
 - 3D Resource management
 - Create, Destroy, Flush, Attach SG, Detach SG
 - DMA-like transfer operations
 - Get, Put
 - Modesetting
 - Command stream submission
 - Capabilities
 - Fencing
- IRQ for fencing
- Config space for fencing and cursor handling
Rendering Command stream

• Gallium state objects
 – Blend, rasterizer, dsa, shaders, samplers, queries etc.
 – Create, bind, destroy operations

• Non-state operations
 – Framebuffer, scissor, viewport, vbos.

• Rendering
 – Draw, clear, blit

• Queries
Renderer

- Convert gallium states to GL interface
- Convert TGSI shaders to GLSL shaders
- GL host context per guest context
 - Required for proper conditional rendering operation
- Works out capabilities from GL version and extensions
- Currently uses GLSL 1.30 shader programs
GL versions

- Guest currently at GL 2.1 + GLSL 1.20
- Host requires GL2.1 + GLSL1.30
- Up to GL3.0 in the guest mostly done
 - Issues with multisample textures and hibernate/migration
- 3.1 and above open a number of questions
 - Lack of ARB_compatibility
Issues

• How best to get 64-bit values back from host
 - Status page seems like my best answer
• How to get fence irqs?
 - Second vq instead – seems like overkill
 - Can a vq attach 0 elements?
 - Or maybe just attach status page all the time
• GL 3.x context creation
 - Due to deprecated features
virtio-gpu

- Secondary project
- Produce a basic virtio gpu that the virgil renderer can attach to.
- Multi-head capable
- Unaccelerated
- PCI and VGA extras
Port QEMU to SDL 2

- SDL 2
 - Multiple window support
 - ARGB cursor support
 - Better GL support
 - EGL
 - Very different input
Qemu console multi-head

• Initial implementation
 – Add arrays of DisplaySurfaces to QemuConsole
 – Add _idx version of some interfaces
 – Use SDL2 multi-window support for demo

• TODO
 – Howto to work out num heads limits
Beyond SDL

- Libvirt integration
- Security
- DRM render nodes
- Using EGL and dma-buf to share the final rendered image
- Viewer using GLX/EGL to composite final rendered image
Demos

- Virgil3D rendering

- Virtio-vga multi-head