
Migration: One year later
KVM Forum 2011

Red Hat

Juan Quintela

August 15, 2011

Abstract

This talk describes current migration status, and ideas for
future work.

Contents

1 What is the Current State

2 Things to do

3 Some solutions

Section 1

What is the Current State

What is the Current State

What needs to be moved

memory
Have I told you that memory nowadays is big? Customer
asking already for 8GB guests. Partners for 64-128GB guests.

disk
And you thought that memory was big. Think again.

devices
Size don’t matter here (insert joke)
But state is spread through a file, not always in a nice place
that is trivial to sent.

What is the Current State

What needs to be moved

memory
Have I told you that memory nowadays is big? Customer
asking already for 8GB guests. Partners for 64-128GB guests.

disk
And you thought that memory was big. Think again.

devices
Size don’t matter here (insert joke)
But state is spread through a file, not always in a nice place
that is trivial to sent.

What is the Current State

What needs to be moved

memory
Have I told you that memory nowadays is big? Customer
asking already for 8GB guests. Partners for 64-128GB guests.

disk
And you thought that memory was big. Think again.

devices
Size don’t matter here (insert joke)
But state is spread through a file, not always in a nice place
that is trivial to sent.

What is the Current State

Backward/Forward compatibility

Old to Old and New to New
Should be no problem (ha).

Old → New
We are in the future, we know what Old sent, should be easy.
(famous last words).

New → Old
We are the future, wanting to sent something to the past, and
we want the past to understand it. Think NP-complete.
But we try, of course.

What is the Current State

Backward/Forward compatibility

Old to Old and New to New
Should be no problem (ha).

Old → New
We are in the future, we know what Old sent, should be easy.
(famous last words).

New → Old
We are the future, wanting to sent something to the past, and
we want the past to understand it. Think NP-complete.
But we try, of course.

What is the Current State

Backward/Forward compatibility

Old to Old and New to New
Should be no problem (ha).

Old → New
We are in the future, we know what Old sent, should be easy.
(famous last words).

New → Old
We are the future, wanting to sent something to the past, and
we want the past to understand it. Think NP-complete.
But we try, of course.

What is the Current State

Sections, Subsections, Versions

A.K.A. Head hurts ...

Sections: each device has one.

Subsections: They are optional. Source decides if they are
needed or not.

Version: Each section has a section number. When we add
some fields to a section, we increase the version number, and
they are not expected from older versions, but are sent from
new versions.

What is the Current State

Sections, Subsections, Versions

A.K.A. Head hurts ...

Sections: each device has one.

Subsections: They are optional. Source decides if they are
needed or not.

Version: Each section has a section number. When we add
some fields to a section, we increase the version number, and
they are not expected from older versions, but are sent from
new versions.

What is the Current State

Sections, Subsections, Versions

A.K.A. Head hurts ...

Sections: each device has one.

Subsections: They are optional. Source decides if they are
needed or not.

Version: Each section has a section number. When we add
some fields to a section, we increase the version number, and
they are not expected from older versions, but are sent from
new versions.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Subsections

Cure cancer

Get World Peace

End World Hunger,

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload

What is the Current State

How qemu works?
A.K.A. Why we need threads for migration

IOthread� �
. . . .
while(1) {

. . . .
qemu mutex unlock iothread();
select (. . .)
qemu mutex lock iothread();
. . . . /* We will refer to this part on the next slide */

} � �
VCPU’s� �
int kvm cpu exec(. . .)
{

. . .
do {

. . . .
qemu mutex unlock iothread();
kvm vcpu ioctl(. .)
qemu mutex lock iothread()
. . . .

} while (ret == 0);
} � �

What is the Current State

How qemu works?
A.K.A. Why we need threads for migration

IOthread� �
. . . .
while(1) {

. . . .
qemu mutex unlock iothread();
select (. . .)
qemu mutex lock iothread();
. . . . /* We will refer to this part on the next slide */

} � �
VCPU’s� �
int kvm cpu exec(. . .)
{

. . .
do {

. . . .
qemu mutex unlock iothread();
kvm vcpu ioctl(. .)
qemu mutex lock iothread()
. . . .

} while (ret == 0);
} � �

What is the Current State

What else iothread does?

� �
. . .
QLISTFOREACHSAFE(ioh , &io handlers , next, pioh) {

i f (. . .FD ISSET(ioh−>fd , readfs) , . . .)
ioh−>fd read(ioh−>opaque)

i f (. . .FD ISSET(ioh−>fd , readfs) , . . .)
ioh−>fd write(ioh−>opaque)

qemu run all timers()
qemu bh poll() � �

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?

What is the Current State

Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much

What is the Current State

Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much

What is the Current State

Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much

What is the Current State

Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much

What is the Current State

Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them

What is the Current State

Incoming migration

A.K.A Who needs a toplevel while we do incoming migration

We don’t have toplevel

Libvirt/user can’t ask anything

Everything had to be configured from the command line

Cancellation can only happen on the outgoing migration side

What is the Current State

Incoming migration

A.K.A Who needs a toplevel while we do incoming migration

We don’t have toplevel

Libvirt/user can’t ask anything

Everything had to be configured from the command line

Cancellation can only happen on the outgoing migration side

What is the Current State

Incoming migration

A.K.A Who needs a toplevel while we do incoming migration

We don’t have toplevel

Libvirt/user can’t ask anything

Everything had to be configured from the command line

Cancellation can only happen on the outgoing migration side

What is the Current State

Incoming migration

A.K.A Who needs a toplevel while we do incoming migration

We don’t have toplevel

Libvirt/user can’t ask anything

Everything had to be configured from the command line

Cancellation can only happen on the outgoing migration side

Section 2

Things to do

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

VMState: Finish the work

Virtio devices: old code exists. Problem is that we have list of
requests, and we have no good idea how to represent lists on
VMState.

Rest of CPU’s: no real problem, just code that needs to be
written. (sections are quite big).

slirp: eats puppies. Slirp code is a mess, It is lists of lists of
lists. Code needs fixing independently of VMState.

Rest of misc devices: Ugliness:

bitfields fields
size differences between vmstate and state
other misc things

Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.

Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.

Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.

Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.

Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.

Things to do

Migration Thread outgoing

A.K.A. Fix World Problems at once

stalls on the vcpu/iohandler: gone

buffered file: gone

we can now measure better what is the speed that we are
sending/receiving

saturate networking: we are our own thread, blocking is ok

Problem: how to handle dirty bitmap

Things to do

Migration Thread outgoing

A.K.A. Fix World Problems at once

stalls on the vcpu/iohandler: gone

buffered file: gone

we can now measure better what is the speed that we are
sending/receiving

saturate networking: we are our own thread, blocking is ok

Problem: how to handle dirty bitmap

Things to do

Migration Thread outgoing

A.K.A. Fix World Problems at once

stalls on the vcpu/iohandler: gone

buffered file: gone

we can now measure better what is the speed that we are
sending/receiving

saturate networking: we are our own thread, blocking is ok

Problem: how to handle dirty bitmap

Things to do

Migration Thread outgoing

A.K.A. Fix World Problems at once

stalls on the vcpu/iohandler: gone

buffered file: gone

we can now measure better what is the speed that we are
sending/receiving

saturate networking: we are our own thread, blocking is ok

Problem: how to handle dirty bitmap

Things to do

Migration Thread outgoing

A.K.A. Fix World Problems at once

stalls on the vcpu/iohandler: gone

buffered file: gone

we can now measure better what is the speed that we are
sending/receiving

saturate networking: we are our own thread, blocking is ok

Problem: how to handle dirty bitmap

Things to do

Incoming Migration Thread

we can have a toplevel back on incoming side

Everything can works as usual, from the monitor

IOThread is running, we can use it

Things to do

Incoming Migration Thread

we can have a toplevel back on incoming side

Everything can works as usual, from the monitor

IOThread is running, we can use it

Things to do

Incoming Migration Thread

we can have a toplevel back on incoming side

Everything can works as usual, from the monitor

IOThread is running, we can use it

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Dirty Bitmap II

A.K.A. More size reduction

We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks

Things to do

Migration protocol format

A.K.A. The more ugly

Since Fortran60 everybody knows that you need a begin/end
to mark zones/sections

Qemu hasn’t learned it, so there is no way to handle the
format from the outside qemu

Solution start/end markers + size

checksums: cpu is cheap

Things to do

Migration protocol format

A.K.A. The more ugly

Since Fortran60 everybody knows that you need a begin/end
to mark zones/sections

Qemu hasn’t learned it, so there is no way to handle the
format from the outside qemu

Solution start/end markers + size

checksums: cpu is cheap

Things to do

Migration protocol format

A.K.A. The more ugly

Since Fortran60 everybody knows that you need a begin/end
to mark zones/sections

Qemu hasn’t learned it, so there is no way to handle the
format from the outside qemu

Solution start/end markers + size

checksums: cpu is cheap

Things to do

Migration protocol format

A.K.A. The more ugly

Since Fortran60 everybody knows that you need a begin/end
to mark zones/sections

Qemu hasn’t learned it, so there is no way to handle the
format from the outside qemu

Solution start/end markers + size

checksums: cpu is cheap

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Things to do

Backward migration

A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care

Section 3

Some solutions

Some solutions

Change the migration format

Suggestion: move to ASN.1

Suggestion: move to XML

.....

That helps describing the data in the wire, but helps with the
other problems how?

Some solutions

Change the migration format

Suggestion: move to ASN.1

Suggestion: move to XML

.....

That helps describing the data in the wire, but helps with the
other problems how?

Some solutions

Change the migration format

Suggestion: move to ASN.1

Suggestion: move to XML

.....

That helps describing the data in the wire, but helps with the
other problems how?

Some solutions

Change the migration format

Suggestion: move to ASN.1

Suggestion: move to XML

.....

That helps describing the data in the wire, but helps with the
other problems how?

Some solutions

All that needs to be changed is

� �
static void put int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
qemu put sbe32s(f , v);

} � �� �
static void put xml int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
printf(”<value type=int32>% d </value>”,*v);

} � �

Some solutions

All that needs to be changed is

� �
static void put int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
qemu put sbe32s(f , v);

} � �� �
static void put xml int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
printf(”<value type=int32>% d </value>”,*v);

} � �

Some solutions

One device gets split in 2 devices

A.K.A. Anthony, I am looking at you� �
struct OldState {

int foo;
int bar;
}
struct FooState {

int foo;
}
struct BarState {

int bar;
} � �

Some solutions

One device gets split in 2 devices (II)

� �
struct OldState {

int foo;
int bar;
struct FooState *foo;
}
struct FooState {

int foo;
} � �

Some solutions

One device gets split in 2 devices (III)

� �
static int old state post load(void *opaque, int version id)
{

OldState *s = opaque;
s−>foo−>foo = s−>foo;
return 0;

}

static const VMStateDescription vmstate foo = {
.name = ”old state”,
.post load = old state post load ,
. fields = (VMStateField []) {

VMSTATEINT32(foo, OldState) ,
VMSTATEINT32(bar, OldState) ,
VMSTATEENDOFLIST()

}
} � �

Some solutions

Postcopy

Networking vs CPU/RAM

we have a new failure case

but we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure

Some solutions

Postcopy

Networking vs CPU/RAM

we have a new failure case

but we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure

Some solutions

Postcopy

Networking vs CPU/RAM

we have a new failure case

but we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure

Some solutions

Postcopy

Networking vs CPU/RAM

we have a new failure case

but we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure

Some solutions

Postcopy

Networking vs CPU/RAM

we have a new failure case

but we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?

Some solutions

Questions?

The end.
Thanks for listening.

	What is the Current State
	Things to do
	Some solutions

