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Abstract

This talk describes current migration status, and ideas for
future work.
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What is the Current State

What needs to be moved

memory
Have I told you that memory nowadays is big? Customer
asking already for 8GB guests. Partners for 64-128GB guests.

disk
And you thought that memory was big. Think again.

devices
Size don’t matter here (insert joke)
But state is spread through a file, not always in a nice place
that is trivial to sent.
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Backward/Forward compatibility

Old to Old and New to New
Should be no problem (ha).

Old → New
We are in the future, we know what Old sent, should be easy.
(famous last words).

New → Old
We are the future, wanting to sent something to the past, and
we want the past to understand it. Think NP-complete.
But we try, of course.
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Sections, Subsections, Versions

A.K.A. Head hurts ...

Sections: each device has one.

Subsections: They are optional. Source decides if they are
needed or not.

Version: Each section has a section number. When we add
some fields to a section, we increase the version number, and
they are not expected from older versions, but are sent from
new versions.
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Subsections

Cure cancer

Get World Peace

End World Hunger, ....

Big idea: Why sent everything?

We can sent only minimal amount of information that is
always needed
Sent rest of information only when it is used
Source sent a subsection when it knows that it is needed
Target never discards a subsection.
If it don’t understand it, it just fails migration.
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Live Migration: When the fun starts

Memory migration

it is big
when we fail: memory corruption
crash of the machine

Disk migration

you thought memory was big
when we fail: disk corruption
data loss
Will not talk more about disk

From a 10000 meters view, memory and disk migration are
equivalent
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What is the Current State

Live Migration: how it works?

We have a dirty bitmap with one bit for each page

We set all the bitmap to “dirty” (A)

We loop through the bitmap: (B)
copy the page
clear the bit

We end the loop when the number of dirty pages is “low
enough” (B)

We stop the machine (C)

We sent the rest of the pages and all devices (C)

Stages? What is that?
A: stage 1
B: stage 2
C: stage 3
cancel/error: stage -1
Don’t you like the meaning overload
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What is the Current State

How qemu works?
A.K.A. Why we need threads for migration

IOthread� �
. . . .
while(1) {

. . . .
qemu mutex unlock iothread();
select ( . . . )
qemu mutex lock iothread();
. . . . /* We will refer to this part on the next slide */

} � �
VCPU’s� �
int kvm cpu exec( . . . )
{

. . .
do {

. . . .
qemu mutex unlock iothread();
kvm vcpu ioctl(. .)
qemu mutex lock iothread()
. . . .

} while (ret == 0);
} � �
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What else iothread does?

� �
. . .
QLISTFOREACHSAFE(ioh , &io handlers , next, pioh) {

i f ( . . .FD ISSET(ioh−>fd , readfs ) , . . .)
ioh−>fd read(ioh−>opaque)

i f ( . . .FD ISSET(ioh−>fd , readfs ) , . . .)
ioh−>fd write(ioh−>opaque)

qemu run all timers()
qemu bh poll() � �



What is the Current State

How can this ever work?

Don’t this mean that things get “monothread”

In general no, because

iohandlers run very fast
vcpu threads are out of guest very few times
Rest of things cheat

block layer: async IO
networking: vhost + async IO

migration: where the abstraction leaks
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What is the Current State

Buffered file

A.K.A. Another buffer layer will fix any computing problem

Migration runs in an IOHandler

But it can’t stop in the middle of a device

We add an autogrowing buffer to be able to always finish
device state write

And we write with a timer that buffer to a FILE *

We wait with select in the FILE * descriptor

We write it with write()

And Kernel wants to do its own buffering

Enough buffering for you?
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Measurements: who needs that?

We have two knobs

migrate speed: in MB
Yes, I mean that, we measure speed in Megabytes, think about
it.
max downtime: in ms

And we try to make sense of them.

When migration don’t converge, we don’t know for how much
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migration speed

Remember the buffered file

Remember that we measure speed in megabytes?

migration handler interesting part is:� �
while (number bytes sent < max speed) {

sent another page()
} � �

What can be wrong with this?

We are measuring how fast we can write to a FILE * buffer
We don’t measure how big/fast/loaded is the network
We have a nice optimization that sent a byte for each page
If we have lots of blank pages we spent a lot of time to sent
them
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Virtio devices: old code exists. Problem is that we have list of
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Things to do

Subsections

Detection of subsection is wrong, only looks at the 1st byte

Needs to look at the whole header, and see if len + name
makes sense

It requires the equivalent of ungetc() to work for 10-20 chars.
And it has to work in the middle of two packets.

Needs to be done, details and testing are the problem.

mail with suggestions sent to qemu-devel@.
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saturate networking: we are our own thread, blocking is ok
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Dirty Bitmap

A.K.A. What is that?

Dirty bitmap has 8 bits for each page. CODE, VGA,
MIGRATION

move to 3 bitmaps: 70 percent size reduction

who produces dirty pages: kvm, mmio

who consumes dirty pages: vga, code, migration

add avi, shake well, and .... idea

use one bitmap for producer, and consumer syncs bitmaps
each time it needs it

this makes it almost thread safe by design
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We have a ram list of ramblocks

And a dirty bitmap from address 0 to max allocated address

So, we have bitmap for holes (not needed)

solution: move bitmap to ramblock instead of ramlist

but you need to fix all exec.c users (TCG a.k.a. ugly)

Why all operations are on guest addresses instead of
ramblocks
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Qemu hasn’t learned it, so there is no way to handle the
format from the outside qemu
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A.K.A. Qdev is incomplete

-M pc-0.14 lies, and uses the same devices that v14

but it uses the versions of v0.15.

We need a way to tell a device: boot with version foo

or without features foo+bar

And then we can use that for migration.

People continue asking that we fix that at migration level, but
solution needs to be at qdev level. Otherwise, we are trying to
boot a device with feature foo, and now magically, migration
have to migration without feature foo.

And get it working.

Almost nobody care about backward migration

But big cpu farms custormes care
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Some solutions

All that needs to be changed is

� �
static void put int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
qemu put sbe32s(f , v);

} � �� �
static void put xml int32(QEMUFile *f , void *pv, size t size)
{

int32 t *v = pv;
printf(”<value type=int32>% d </value>”,*v);

} � �
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One device gets split in 2 devices

A.K.A. Anthony, I am looking at you� �
struct OldState {

int foo;
int bar;
}
struct FooState {

int foo;
}
struct BarState {

int bar;
} � �
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One device gets split in 2 devices (II)

� �
struct OldState {

int foo;
int bar;
struct FooState *foo;
}
struct FooState {

int foo;
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Some solutions

One device gets split in 2 devices (III)

� �
static int old state post load(void *opaque, int version id)
{

OldState *s = opaque;
s−>foo−>foo = s−>foo;
return 0;

}

static const VMStateDescription vmstate foo = {
.name = ”old state”,
.post load = old state post load ,
. fields = (VMStateField []) {

VMSTATEINT32(foo, OldState) ,
VMSTATEINT32(bar, OldState) ,
VMSTATEENDOFLIST()

}
} � �
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Networking vs CPU/RAM

we have a new failure case

but .... we only have to copy each page only once

guest performance varies

should be possible to do using current infrastructure
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measurements: we need more and better

Post copy?



Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?



Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?



Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?



Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?



Some solutions

Conclusions

A.K.A. There is no conclusion of migration issues

VMState: this needs to be finish

On wire protocol: being/end/size/checksum?

Migration thread: Umesh code good start

Bitmap handling: something more reasonable

measurements: we need more and better

Post copy?



Some solutions

Questions?



The end.
Thanks for listening.
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