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KVM & Memory Management Updates
 EPT Accessed & Dirty Bits

 1GB hugepages

 Balloon vs. Transparent Huge Pages

 Automatic NUMA Placement

 Automatic Ballooning
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EPT Accessed & Dirty Bits
 Extended Page Tables (EPT)

● Second set of page tables
● Translates “guest physical” (virtual) to machine physical

● Removes need for shadow page tables

 Originally, EPT only supported permissions and translations
● Accessed & Dirty bits emulated in software
● Take extra page faults to track A & D information

 EPT supports hardware Accessed & Dirty bit tracking in newer CPUs
● Eliminates the extra page faults

 Already upstream



4

1GB hugepages
 Interface to hugetlbfs

● Allows 1GB size huge pages
● Desired page size can be specified at mmap time
● Statically allocated
● Not evictable, always pinned
● In hugetlbfs only, not for transparent huge pages

 Use cases
● HPC on bare metal
● Use KVM for partitioning, with large guests
● Want the last bit of performance
● Does not need memory overcommit

 In -mm
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Balloon vs. Transparent Huge Pages
 Transparent Huge Pages (THP)

● Use 2MB pages for userspace when possible
● Typical 5-15% performance improvement
● Memory defragmented through compaction

● Move data around, to free up 2MB area

 Balloon driver
● Allocate memory in a guest
● Return memory to the host
● Guest does not use memory while in balloon
● Effectively shrink guest memory size

 Proposed patch series by Rafael Aquini
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THP & Compaction
 Transparent Huge Pages (THP) needs 2MB blocks of memory

 Normal (4kB) allocations can fragment free memory

 Compaction can move page cache & anonymous memory data around
● Frees up 2MB areas, for THP use
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Compaction vs. Balloon pages
 Balloon pages are not anonymous or page cache memory

 The compaction code does not know how to move them

 Balloon pages can take a lot of memory

 When compaction fails, THP performance benefits not realized

 Teach compaction how to move balloon pages 
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NUMA
 Non Uniform Memory Access

 Each CPU has its own memory (fast)

 Other memory can be accessed indirectly (slower)
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Unlucky NUMA Placement
 Without NUMA placement code, this can happen

Node 1

VM1vcpu2VM2vcpu2

Node 0

VM2vcpu1VM1vcpu1
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Optimized NUMA Placement
 With numad, autonuma, sched/numa, numa/core, ...

 3-15% performance improvement typical

Node 0 Node 1

VM2vcpu2VM2vcpu1VM1vcpu2VM1vcpu1
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Automatic NUMA Placement
 Obvious what better NUMA placement looks like, ...

 ... but how do we get there?

 Numad
● Userspace NUMA placement daemon
● For long lived tasks
● Checks how much memory and CPU each task uses
● “bin packing” to move tasks to NUMA nodes where they fit
● Works right now
● Not as good with dynamically changing workloads
● More overhead, higher latency than kernel side solution

 Kernel side solution desired

 Several competing kernel side solutions proposed
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Automatic NUMA Placement (Kernel)
 Three codebases:

● Autonuma (Andrea Arcangeli)
● Sched/numa & numa/core (Peter Zijlstra & Ingo Molnar)
● Merged simple codebase (Mel Gorman)

 Some similarities
● Strategies are mostly the same
● NUMA Page Faults & Migration
● Node scheduler affinity driven by fault statistics

 Some differences
● Mostly implementation details
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NUMA Faults & Migration
 Page fault driven NUMA migration

 “Memory follows CPU”

 Periodically, mark process memory as inaccessible
● Clear present bit in page table entries, mark as NUMA
● Rate limited to some number of MB/second

● 3-15% NUMA gain typical, overhead limited to less
● On “older” processes, short lived processes not affected

 When process tries to access memory
● Page fault code recognizes NUMA fault
● NUMA fault handling code is called
● If page is on wrong NUMA node

● Try to migrate to where the task is running now
● If migrate fails, leave page on old NUMA node

● No free memory on target node, page locked, ...
● Increment per-task NUMA fault statistics for node where the 

faulted-on page is now
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NUMA Fault Statistics
 NUMA page faults keep an array per task

● Recent NUMA faults incurred on each node
● Periodically the fault stats are divided by 2

● Ages the stats, new faults count more than old ones
● “Where is the memory I am currently using?”

Faults

Node0 100

Node1 3200

Node2 5

Node3 0
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Fault Driven Scheduler Affinity
 “CPU follows memory”

 Scheduler tries to run the task where its memory is

 Sched/numa & numa/core set desired task NUMA node
● Hope the load balancer moves it later

 Autonuma searches other NUMA nodes
● Node with more memory accesses than current node

● Current task's NUMA locality must improve
● Find task to trade places with

● Overall cross-node accesses must go down
● Tasks trade places immediately

● Not using scheduler load balancer
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Autonuma vs. Sched/numa vs. ...
 Autonuma

● Performs better, but unknown exactly why
● Actively groups threads within a task together

● Fault stats not just per task, but also per mm
● More complex than sched/numa or Mel's merged tree

● Not known which complexity could be removed

 Sched/numa & numa/core
● Simpler than autonuma
● Does not perform as well

● Large regressions on some tests, against mainline
● Unclear what needs to be changed to make it work better

 Mel's merged tree
● Clean, but extremely simplistic (MORON policy)
● Basic infrastructure from autonuma and sched/numa
● Meant as basis for a better placement policy

● Clear way forward from this codebase
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Dealing With NUMA Overflow
 Some workloads do not fit nicely on NUMA nodes

● A process with more memory than on one NUMA node
● A process with more threads than there are CPUs in a node

 Memory overflow
● Not all of a process's memory fits on one node
● Page migrations will fail
● Fault statistics tell the scheduler where the memory is
● Hopefully threads will migrate to their memory

 CPU overflow
● Not all threads can run on one node
● Memory gets referenced from multiple nodes

● Only migrate on sequential faults from same node
● Threads cannot get migrated to #1 preferred node

● Migrate to nearby node instead
● Migrate to node where process has many NUMA faults

 Unclear if this is enough...
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Memory Overcommit
 Cloud computing is a “race to the bottom”

 Cheaper and cheaper virtual machines expected

 Need to squeeze more virtual machines on each computer
● CPU & bandwidth are easy
● More CPU time and bandwidth become available each 

second

 Amount of memory stays constant (“non-renewable resource”)

 Swapping to disk is too slow
● SSB is an option, but could be too expensive
● Need something fast & free
● Frontswap + zram an option

● Compacting unused data slower than tossing it out
● Ballooning guests is an option

● Balloon driver returns memory from guest to host
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Automatic Ballooning
 Goal: squeeze more guests into a host, with minimal performance hit

● Avoid swapping to disk

 Balloon driver is used to return memory to the host
● For one guest to grow, others must give memory back
● Could be done automatically

 Balloon guests down when host runs low on free memory
● Put pressure on every guest
● Guests return a little bit of memory to the host
● Memory can be used by host itself, or by other guests

 Memory pressure inside guests deflates balloons
● Guests get memory back from host in small increments

 Ideally, the pressures will balance out

 Some of the pieces are in place, some proposed, some not developed 
yet – longer term project
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Vmevents & Guest Shrinking
 Proposed patch series by Anton Vorontsov, Pekka Engberg, ...

 Vmevents file descriptor

 Program opens fd using special syscall

 Can be blocking read() or poll/select()

 Kernel tells userspace when memory needs to be freed
● Minimal pressure – free garbage collected memory?
● Medium pressure – free some caches, shrink some guests?
● OOM pressure – something unimportant should exit now

 Qemu-kvm, libvirtd or something else in virt stack could register for 
such vm events

● When required, tell one or more guests to shrink
● Guests will balloon some memory, freeing it to the host
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Ballooning & Guest Growing
 Automatically shrinking guests is great ...

 ... but they may need their memory back at some point

 Linux pageout code has various pressure balancing concepts
● #scanned / #rotated to see how heavily used pages in each 

LRU set are (“use ratio”)
● Each cgroup has its own LRU sets, with its own use ratios

● Pressure between cgroups independent of use ratios...
● “seek cost” for objects in slab caches
● Slab cache pressure independent of use ratio of LRU pages
● ... this could use some unification

 The balloon can be called from the pageout code inside a guest
● When we reclaim lots of pages ...
● ... also request some pages from the balloon
● Avoid doing this for streaming file I/O

 Adding pressure in the host, will result in being shrunk again later
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Ballooning & QOS
 Ballooning can help avoid host swapping, which helps latencies

 But ...
● Shrinking a guest too small could also impact latencies ...
● ... or even cause a guest to run out of memory

 Never shrink a guest below a certain size
● How big? No way to tell automatically...

 Reasonable minimum size needs to be specified in the configuration

 Minimums enforced by whatever listens for VM notifications
● Qemu-kvm, libvirtd, vdsm, ... ?

 When a host gets overloaded, other actions need to be taken
● Live migrate a guest away
● Kill an unimportant guest?

 Automatic ballooning is part of a larger solution
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Conclusions
 KVM performance continues to improve

● No large gains left, but many small ones

 Uncontroversial changes (nearly) upstream
● EPT A/D bits & 1GB huge pages

 Larger changes take time to get upstream
● Complex problem? Unresolved questions...

 Two fiercely competing NUMA placement projects
● Mel Gorman heroically smashed the two together
● New tree looks like a good basis for moving forward
● Typical 3-15% performance gains expected

 Squeeze more guests onto each system
● Shrink and grow guest memory as needed
● Extensive use of ballooning makes THP allocations harder
● Patches proposed to make balloon pages movable
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Questions?
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