
KVM & Memory Management Updates

KVM Forum 2012

Rik van Riel
Red Hat, Inc.



2

KVM & Memory Management Updates
 EPT Accessed & Dirty Bits

 1GB hugepages

 Balloon vs. Transparent Huge Pages

 Automatic NUMA Placement

 Automatic Ballooning



3

EPT Accessed & Dirty Bits
 Extended Page Tables (EPT)

● Second set of page tables
● Translates “guest physical” (virtual) to machine physical

● Removes need for shadow page tables

 Originally, EPT only supported permissions and translations
● Accessed & Dirty bits emulated in software
● Take extra page faults to track A & D information

 EPT supports hardware Accessed & Dirty bit tracking in newer CPUs
● Eliminates the extra page faults

 Already upstream



4

1GB hugepages
 Interface to hugetlbfs

● Allows 1GB size huge pages
● Desired page size can be specified at mmap time
● Statically allocated
● Not evictable, always pinned
● In hugetlbfs only, not for transparent huge pages

 Use cases
● HPC on bare metal
● Use KVM for partitioning, with large guests
● Want the last bit of performance
● Does not need memory overcommit

 In -mm



5

Balloon vs. Transparent Huge Pages
 Transparent Huge Pages (THP)

● Use 2MB pages for userspace when possible
● Typical 5-15% performance improvement
● Memory defragmented through compaction

● Move data around, to free up 2MB area

 Balloon driver
● Allocate memory in a guest
● Return memory to the host
● Guest does not use memory while in balloon
● Effectively shrink guest memory size

 Proposed patch series by Rafael Aquini



6

THP & Compaction
 Transparent Huge Pages (THP) needs 2MB blocks of memory

 Normal (4kB) allocations can fragment free memory

 Compaction can move page cache & anonymous memory data around
● Frees up 2MB areas, for THP use



7

Compaction vs. Balloon pages
 Balloon pages are not anonymous or page cache memory

 The compaction code does not know how to move them

 Balloon pages can take a lot of memory

 When compaction fails, THP performance benefits not realized

 Teach compaction how to move balloon pages 



8

NUMA
 Non Uniform Memory Access

 Each CPU has its own memory (fast)

 Other memory can be accessed indirectly (slower)



9

Unlucky NUMA Placement
 Without NUMA placement code, this can happen

Node 1

VM1vcpu2VM2vcpu2

Node 0

VM2vcpu1VM1vcpu1



10

Optimized NUMA Placement
 With numad, autonuma, sched/numa, numa/core, ...

 3-15% performance improvement typical

Node 0 Node 1

VM2vcpu2VM2vcpu1VM1vcpu2VM1vcpu1



11

Automatic NUMA Placement
 Obvious what better NUMA placement looks like, ...

 ... but how do we get there?

 Numad
● Userspace NUMA placement daemon
● For long lived tasks
● Checks how much memory and CPU each task uses
● “bin packing” to move tasks to NUMA nodes where they fit
● Works right now
● Not as good with dynamically changing workloads
● More overhead, higher latency than kernel side solution

 Kernel side solution desired

 Several competing kernel side solutions proposed



12

Automatic NUMA Placement (Kernel)
 Three codebases:

● Autonuma (Andrea Arcangeli)
● Sched/numa & numa/core (Peter Zijlstra & Ingo Molnar)
● Merged simple codebase (Mel Gorman)

 Some similarities
● Strategies are mostly the same
● NUMA Page Faults & Migration
● Node scheduler affinity driven by fault statistics

 Some differences
● Mostly implementation details



13

NUMA Faults & Migration
 Page fault driven NUMA migration

 “Memory follows CPU”

 Periodically, mark process memory as inaccessible
● Clear present bit in page table entries, mark as NUMA
● Rate limited to some number of MB/second

● 3-15% NUMA gain typical, overhead limited to less
● On “older” processes, short lived processes not affected

 When process tries to access memory
● Page fault code recognizes NUMA fault
● NUMA fault handling code is called
● If page is on wrong NUMA node

● Try to migrate to where the task is running now
● If migrate fails, leave page on old NUMA node

● No free memory on target node, page locked, ...
● Increment per-task NUMA fault statistics for node where the 

faulted-on page is now



14

NUMA Faults & Migration
 Page fault driven NUMA migration

 “Memory follows CPU”

 Periodically, mark process memory as inaccessible
● Clear present bit in page table entries, mark as NUMA
● Rate limited to some number of MB/second

● 3-15% NUMA gain typical, overhead limited to less
● On “older” processes, short lived processes not affected

 When process tries to access memory
● Page fault code recognizes NUMA fault
● NUMA fault handling code is called
● If page is on wrong NUMA node

● Try to migrate to where the task is running now
● If migrate fails, leave page on old NUMA node

● No free memory on target node, page locked, ...
● Increment per-task NUMA fault statistics for node where the 

faulted-on page is now



15

NUMA Fault Statistics
 NUMA page faults keep an array per task

● Recent NUMA faults incurred on each node
● Periodically the fault stats are divided by 2

● Ages the stats, new faults count more than old ones
● “Where is the memory I am currently using?”

Faults

Node0 100

Node1 3200

Node2 5

Node3 0



16

Fault Driven Scheduler Affinity
 “CPU follows memory”

 Scheduler tries to run the task where its memory is

 Sched/numa & numa/core set desired task NUMA node
● Hope the load balancer moves it later

 Autonuma searches other NUMA nodes
● Node with more memory accesses than current node

● Current task's NUMA locality must improve
● Find task to trade places with

● Overall cross-node accesses must go down
● Tasks trade places immediately

● Not using scheduler load balancer



17

Autonuma vs. Sched/numa vs. ...
 Autonuma

● Performs better, but unknown exactly why
● Actively groups threads within a task together

● Fault stats not just per task, but also per mm
● More complex than sched/numa or Mel's merged tree

● Not known which complexity could be removed

 Sched/numa & numa/core
● Simpler than autonuma
● Does not perform as well

● Large regressions on some tests, against mainline
● Unclear what needs to be changed to make it work better

 Mel's merged tree
● Clean, but extremely simplistic (MORON policy)
● Basic infrastructure from autonuma and sched/numa
● Meant as basis for a better placement policy

● Clear way forward from this codebase



18

Dealing With NUMA Overflow
 Some workloads do not fit nicely on NUMA nodes

● A process with more memory than on one NUMA node
● A process with more threads than there are CPUs in a node

 Memory overflow
● Not all of a process's memory fits on one node
● Page migrations will fail
● Fault statistics tell the scheduler where the memory is
● Hopefully threads will migrate to their memory

 CPU overflow
● Not all threads can run on one node
● Memory gets referenced from multiple nodes

● Only migrate on sequential faults from same node
● Threads cannot get migrated to #1 preferred node

● Migrate to nearby node instead
● Migrate to node where process has many NUMA faults

 Unclear if this is enough...



19

Dealing With NUMA Overflow
 Some workloads do not fit nicely on NUMA nodes

● A process with more memory than on one NUMA node
● A process with more threads than there are CPUs in a node

 Memory overflow
● Not all of a process's memory fits on one node
● Page migrations will fail
● Fault statistics tell the scheduler where the memory is
● Hopefully threads will migrate to their memory

 CPU overflow
● Not all threads can run on one node
● Memory gets referenced from multiple nodes

● Only migrate on sequential faults from same node
● Threads cannot get migrated to #1 preferred node

● Migrate to nearby node instead
● Migrate to node where process has many NUMA faults

 Unclear if this is enough...



20

Memory Overcommit
 Cloud computing is a “race to the bottom”

 Cheaper and cheaper virtual machines expected

 Need to squeeze more virtual machines on each computer
● CPU & bandwidth are easy
● More CPU time and bandwidth become available each 

second

 Amount of memory stays constant (“non-renewable resource”)

 Swapping to disk is too slow
● SSB is an option, but could be too expensive
● Need something fast & free
● Frontswap + zram an option

● Compacting unused data slower than tossing it out
● Ballooning guests is an option

● Balloon driver returns memory from guest to host



21

Memory Overcommit
 Cloud computing is a “race to the bottom”

 Cheaper and cheaper virtual machines expected

 Need to squeeze more virtual machines on each computer
● CPU & bandwidth are easy
● More CPU time and bandwidth become available each 

second

 Amount of memory stays constant (“non-renewable resource”)

 Swapping to disk is too slow
● SSB is an option, but could be too expensive
● Need something fast & free
● Frontswap + zram an option

● Compacting unused data slower than tossing it out
● Ballooning guests is an option

● Balloon driver returns memory from guest to host



22

Automatic Ballooning
 Goal: squeeze more guests into a host, with minimal performance hit

● Avoid swapping to disk

 Balloon driver is used to return memory to the host
● For one guest to grow, others must give memory back
● Could be done automatically

 Balloon guests down when host runs low on free memory
● Put pressure on every guest
● Guests return a little bit of memory to the host
● Memory can be used by host itself, or by other guests

 Memory pressure inside guests deflates balloons
● Guests get memory back from host in small increments

 Ideally, the pressures will balance out

 Some of the pieces are in place, some proposed, some not developed 
yet – longer term project



23

Vmevents & Guest Shrinking
 Proposed patch series by Anton Vorontsov, Pekka Engberg, ...

 Vmevents file descriptor

 Program opens fd using special syscall

 Can be blocking read() or poll/select()

 Kernel tells userspace when memory needs to be freed
● Minimal pressure – free garbage collected memory?
● Medium pressure – free some caches, shrink some guests?
● OOM pressure – something unimportant should exit now

 Qemu-kvm, libvirtd or something else in virt stack could register for 
such vm events

● When required, tell one or more guests to shrink
● Guests will balloon some memory, freeing it to the host



24

Ballooning & Guest Growing
 Automatically shrinking guests is great ...

 ... but they may need their memory back at some point

 Linux pageout code has various pressure balancing concepts
● #scanned / #rotated to see how heavily used pages in each 

LRU set are (“use ratio”)
● Each cgroup has its own LRU sets, with its own use ratios

● Pressure between cgroups independent of use ratios...
● “seek cost” for objects in slab caches
● Slab cache pressure independent of use ratio of LRU pages
● ... this could use some unification

 The balloon can be called from the pageout code inside a guest
● When we reclaim lots of pages ...
● ... also request some pages from the balloon
● Avoid doing this for streaming file I/O

 Adding pressure in the host, will result in being shrunk again later



25

Ballooning & QOS
 Ballooning can help avoid host swapping, which helps latencies

 But ...
● Shrinking a guest too small could also impact latencies ...
● ... or even cause a guest to run out of memory

 Never shrink a guest below a certain size
● How big? No way to tell automatically...

 Reasonable minimum size needs to be specified in the configuration

 Minimums enforced by whatever listens for VM notifications
● Qemu-kvm, libvirtd, vdsm, ... ?

 When a host gets overloaded, other actions need to be taken
● Live migrate a guest away
● Kill an unimportant guest?

 Automatic ballooning is part of a larger solution



26

Conclusions
 KVM performance continues to improve

● No large gains left, but many small ones

 Uncontroversial changes (nearly) upstream
● EPT A/D bits & 1GB huge pages

 Larger changes take time to get upstream
● Complex problem? Unresolved questions...

 Two fiercely competing NUMA placement projects
● Mel Gorman heroically smashed the two together
● New tree looks like a good basis for moving forward
● Typical 3-15% performance gains expected

 Squeeze more guests onto each system
● Shrink and grow guest memory as needed
● Extensive use of ballooning makes THP allocations harder
● Patches proposed to make balloon pages movable



27

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

