
Taking it to the Nest Level

Nested KVM on the POWER9 Processor

Suraj Jitindar Singh - IBM Australia

Disclaimer

This work represents the view of the authors and does not necessarily represent the view of IBM.

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product

and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml

The following are trademarks or registered trademarks of other companies.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

QEMU is a trademark of Fabrice Bellard.

* Other product and service names might be trademarks of IBM or other companies.
2

Who am I?
● Live in Canberra, Australia

● Work at Ozlabs, IBM Australia

● Virtualisation on Power
○ Linux/KVM

○ QEMU

● Ride Motorbikes

3

This is going to go by quick
● If possible please keep questions to the end

4

Some Terminology
● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor

5

Some Terminology
● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor

Level 0 (L0) - Host/Hypervisor OS

L0 Userspace

6

● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor
○ L1 Guest (Hypervisor)

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1)
Guest OS

L0 Userspace

L1
Userspace

L1
Userspace

Level 1 (L1)
Guest OS

Some Terminology

7

● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor
○ L1 Guest (Hypervisor)
○ L2 (Nested) Guest

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1)
Guest
Hypervisor OS

L0 Userspace

L1
Userspace

L1
Userspace

Level 1 (L1)
Guest Hypervisor OS

Level 2 (L2)
Nested
Guest OS

Level 2 (L2)
Nested
Guest OS

L2
Userspace

L2
Userspace

Some Terminology

8

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

9

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● KVM-HV vs KVM-PR

10

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● 3 Privilege Levels - HV/SV/PR

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)

11

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● 3 Privilege Levels - HV/SV/PR
● KVM-HV vs KVM-PR

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)

12

Nested KVM-PR

KVM-HV

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● Nested KVM-PR
○ L1 guest runs in supervisor mode
○ L2 guest runs in userspace
○ L1 emulates supervisor instructions for L2

L0 Hypervisor

L1 Guest (Supervisor)

L2 Guest (Problem)

KVM-PR

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)

13

Nested KVM-PR

KVM-HV

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● Nested KVM-PR
○ L1 guest runs in supervisor mode
○ L2 guest runs in userspace
○ L1 emulates supervisor instructions for L2

● Nested KVM-HV
○ L1 guest runs in supervisor mode
○ L2 guest runs in supervisor mode
○ No need to emulate supervisor instructions
○ L0 emulates hypervisor instructions for L1

Nested KVM-HV

L0 Hypervisor L0 Hypervisor

L1 Guest (Supervisor)

L2 Guest (Problem)

KVM-PR

KVM-HV

KVM-HV

L1 Guest (Supervisor)

L2 Guest (Supervisor)

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)

14

But Why?
● Testing

○ Openstack requires large number of
hardware configurations

○ Able to test hypervisor changes in a
virtualised environment

○ Able to test hypervisor management
software

○ Able to test migration of hypervisors

● Ability to run guests even if already
virtualised (e.g. the cloud)

● Faster development process
● Because we could!!!

¯_(ツ)_/¯

15

Breath

16

So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside

another KVM-HV guest

17

So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside

another KVM-HV guest
● Getting from the L1 guest into the

L2 guest

1.

L1 L2

18

So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside

another KVM-HV guest
● Getting from the L1 guest into the

L2 guest
● L2 guest address translation

○ Instruction Address
○ Data Address

1.

L1 L2

2.

EA-GRA-HRA

19

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
Hypervisor

1.

L1 L2

2.

EA-GRA-HRA

20

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest

Hypervisor

Entry
Path

1.

L1 L2

2.

EA-GRA-HRA

21

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

Hypervisor

Guest

Entry
Path

1.

L1 L2

2.

EA-GRA-HRA

22

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory

Hypervisor

Guest

Entry
Path

Exit
Path

1.

L1 L2

2.

EA-GRA-HRA

23

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory
○ Resume execution in the host

Hypervisor

Guest

Entry
Path

Exit
Path

1.

L1 L2

2.

EA-GRA-HRA

24

What happens when you run a guest?
● L0 has the state of the L1 guest

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory
○ Resume execution in the host

● L0 also maintains page tables to
manage the partitioning of memory
for the guest real address space

Hypervisor

Guest

Entry
Path

Exit
Path

1.

L1 L2

2.

EA-GRA-HRA

25

Nested Guest Entry - Trap and Emulate
● L0 runs L1 L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

26

Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

27

Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

28

Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 executes HRFID
○ L0 knows L1 wants to enter its guest
○ L0 loads L2 state onto the cpu and

HRFIDs

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

L2 Guest

29

Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 executes HRFID
○ L0 knows L1 wants to enter its guest
○ L0 loads L2 state onto the cpu and

HRFIDs
○ L2 guest is now executing in supervisor

state just as L1 was

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

L2 Guest

30

Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately
returns to L2

L0 Hypervisor

L1 Guest

L2 Guest

T

1.

L1 L2

2.

EA-GRA-HRA

31

Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1

L0 Hypervisor

L1 Guest

L2 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

32

Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

33

Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 guest continues to execute as

normal

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

34

Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 guest continues to execute as

normal

● Trap returns execution to L0
○ L1 waits to be scheduled again

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

35

Nested Guest Entry - Trap and Emulate
● Trap and emulate approach is slow

○ Many context switches from L0 <-> L1
to enter L2

○ Gets worse the deeper you nest

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

36

Is there a better way?
● Paravirtualise with an H-CALL L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

37

Is there a better way?
● Paravirtualise with an H-CALL
● H_ENTER_NESTED

○ L1 makes H-CALL to L0
■ Location in L1 memory of L2 state

to use
■ L0 loads L2 state onto the cpu

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

H_ENTER_
NESTED

H-CALL
Return

1.

L1 L2

2.

EA-GRA-HRA

38

Is there a better way?
● Paravirtualise with an H-CALL
● H_ENTER_NESTED

○ L1 makes H-CALL to L0
■ Location in L1 memory of L2 state

to use
■ L0 loads L2 state onto the cpu

○ Interrupt which needs handling in L1
■ Write L2 state back in to L1

memory
■ L0 returns to L1 from H-CALL

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

H_ENTER_
NESTED

H-CALL
Return

1.

L1 L2

2.

EA-GRA-HRA

39

What L0 Sees
● How much state does L0 have to

track for L2
○ L2 state mainly stored in L1 memory

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) -
Guest
Hypervisor OS

Level 1 (L1) -
Guest OS

1.

L1 L2

2.

EA-GRA-HRA

40

What L0 Sees
● How much state does L0 have to

track for L2
○ L2 state mainly stored in L1 memory

● Each nested guest essentially a
“shadow” guest of L0

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) -
Guest
Hypervisor OS

Level 2 (L2) -
Nested Guest
OS

Level 1 (L1) -
Guest OS

Shadow
Nested (L2)
Guest

1.

L1 L2

2.

EA-GRA-HRA

41

What L0 Sees
● How much state does L0 have to

track for L2
○ L2 state mainly stored in L1 memory

● Each nested guest essentially a
“shadow” guest of L0

● L0 must maintain some state for
each nested guest

○ L1 LPID of this guest
○ Shadow L0 LPID for this guest
○ Shadow Page Tables
○ L2 Process Table

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) -
Guest
Hypervisor OS

Level 2 (L2) -
Nested Guest
OS

Level 1 (L1) -
Guest OS

/*
 * Structure for a nested guest, that is, for a guest that is managed by
 * one of our guests.
 */
struct kvm_nested_guest {
 struct kvm *l1_host; /* L1 VM that owns this nested guest */
 int l1_lpid; /* lpid L1 guest thinks this guest is */
 int shadow_lpid; /* real lpid of this nested guest */
 pgd_t *shadow_pgtable; /* our page table for this guest */
 u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
 u64 process_table; /* process table entry for this guest */
 long refcnt; /* number of pointers to this struct */
 struct mutex tlb_lock; /* serialize page faults and tlbies */
 struct kvm_nested_guest *next;
 cpumask_t need_tlb_flush;
 cpumask_t cpu_in_guest;
 short prev_cpu[NR_CPUS];
};

Shadow
Nested (L2)
Guest

1.

L1 L2

2.

EA-GRA-HRA

42

What Now?
● Enter Nested Guest

○ We can load up a nested guest context
and start executing

1.

L1 L2

2.

EA-GRA-HRA

43

What Now?
● Enter Nested Guest

○ We can load up a nested guest context
and start executing

● Nested Guest Address Translation
○ We will take a page fault on the first L2

instruction
○ How do we translate L2 addresses?

1.

L1 L2

2.

EA-GRA-HRA

44

Breath

45

Guest Address Translation
● Two level radix tree translation to

get to a hardware address

1.

L1 L2

2.

EA-GRA-HRA

Hardware Address

46

Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

(Virtual Address)

Hardware Address

47

Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

● Process Scoped Translation
○ Radix trees in L1 memory
○ Managed by L1 to divide its memory
○ Associated with PID
○ Results in a Guest Real Address

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Process
Scoped

Hardware Address

48

Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

● Process Scoped Translation
○ Radix trees in L1 memory
○ Managed by L1 to divide its memory
○ Associated with PID
○ Results in a Guest Real Address

● Partition Scoped Translation
○ Radix trees in L0 memory
○ Managed by L0 to divide its memory
○ Associated with LPID
○ Results in a Host Real Address

■ Hardware Address

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)

(Hardware Address)

Process
Scoped

Partition
Scoped

Hardware Address

49

Guest Address Translation
● Guest EA

○ Virtual Address

● PID
○ Per Process ID
○ Used to tag cache entries
○ Used for Process Scoped Translation

● LPID
○ Per Logical Partition ID
○ Used to tag cache entries
○ Host has one

■ Normally 0
○ One allocated for each Guest

■ 1, 5, 127
■ Unique to that Guest

○ Used for Partition Scoped Translation

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)

(Hardware Address)

Process
Scoped

Partition
Scoped

Hardware Address

50

Guest Address Translation
● All a bit hand wavy
● Let's walk through an example

○ EA -> HRA
○ LPID = 7
○ PID = 0

● Remember this is what the
hardware is doing

1.

L1 L2

2.

EA-GRA-HRA

51

Guest Address Translation
● Partition Table

○ In L0 memory
○ Entry per LPID
○ Pointer to partition scoped radix tree
○ Pointer to process table

■ In L1 memory

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

52

Guest Address Translation
● Index by LPID = 7
● Select Partition Table Entry

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

53

Process Scoped Address Translation
● Find the Process Table

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

54

● Index by PID = 0
● Select the Process Table Entry

○ Pointer to Process Scoped Radix Tree Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

55

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

56

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

57

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

58

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

59

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

60

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

61

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix
Tree

● Translate Guest Effective Address
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

62

● We now have our Guest Real
Address (GRA)

Guest Real Address (GRA)

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

63

● Now need to do partition scoped
translation

● Index by LPID = 7

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

64

● Now need to do partition scoped
translation

● Index by LPID = 7
● Select the Partition Scoped Radix

Tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

65

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

66

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

67

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

68

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

69

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

70

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

71

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix
Tree

● Translate Guest Real Address
(GRA) to a Host Real Address
(HRA)

○ By walking the radix tree

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

72

● We now have our Host Real
Address (HRA)

○ Can do the hardware access

Host Real Address (HRA)

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

73

Guest Address Translation
● Quick Recap

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

74

Guest Address Translation
Guest Effective Address (EA)

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

75

Guest Address Translation
Guest Effective Address (EA)

Guest Real Address (GRA)

Process
Scoped

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

76

Guest Address Translation
Guest Effective Address (EA)

Guest Real Address (GRA)

Process
Scoped

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

77

Guest Address Translation
Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)

Process
Scoped

Partition
Scoped

Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

Hardware Address

78

Breath

79

Nested Address Translation
● That seems pretty easy
● What about nested address

translation?

1.

L1 L2

2.

EA-GRA-HRA

80

Nested Address Translation
● L0 has a Partition Table for its

guests
○ In L0 memory
○ Used to setup mappings for L1 GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

81

Nested Address Translation
● L0 has a Partition Table for its

guests
● L1 has a Partition Table for its

guests
○ In L1 memory
○ Used to setup mappings for L2 GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

82

Nested Address Translation
● L0 has a Partition Table for its

guests
● L1 has a Partition Table for its

guests
● Hardware can only know about one

partition table
○ Could switch it

■ Flush caches

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

83

Nested Address Translation
● L0 has a Partition Table for its

guests
● L1 has a Partition Table for its

guests
● Hardware only knows about one

partition table
○ Could switch it

■ Flush caches
○ Each partition table only does a single

level of translation
■ L2 GRA -> L1 GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

84

Nested Address Translation
● L0 has a Partition Table for its

guests
● L1 has a Partition Table for its

guests
● Hardware only knows about one

partition table
○ Could switch it

■ Flush caches
○ Each partition table only does a single

level of translation
■ L2 GRA -> L1 GRA
■ L1 GRA -> L0 HRA
■ Hardware needs

L2 GRA -> L0 HRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

85

Nested Address Translation
● L0 allocates a “shadow LPID” for

the nested guest
○ e.g. LPID = 8

● Create an entry in the L0 partition
table

○ Will contain mappings for the Nested
(L2) Guest

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

86

Process Scoped Nested Translation
● L2 process table is in L2 memory

○ Managed by L2
L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

87

Process Scoped Nested Translation
● L2 process table is in L2 memory

○ Managed by L2

● L0 can copy the process table from
the L1 partition table into its entry
for the “shadow LPID” allocated for
the L2 guest

● Hardware can find the process
table

○ L2 EA -> L2 GRA translation

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

88

● What about Partition Scoped
Translation?

○ Have a L2 GRA from process scoped
○ Need a hardware accessible mapping

for L2 GRA -> L0 HRA translation
○ Hardware needs a single radix tree

■ Can’t just walk the two in the two
partition tables

■ But software can
■ So let’s see what happens when

we handle a page fault

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

89

L2 Guest Real Address

● L2 GRA -> L1 GRA
● Mapping in L1 Partition Table

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

90

L2 Guest Real Address

L1 Guest Real Address

Translate in
Software

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

91

L2 Guest Real Address

L1 Guest Real Address

● No PTE?
○ Synthesise interrupt to the L1 OS
○ L1 OS will fault in an entry
○ Can retry next time

Translate in
Software

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

92

L2 Guest Real Address

L1 Guest Real Address

● L1 GRA -> L0 HRA
● Mapping in L0 Partition Table

Translate in
Software

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

93

L2 Guest Real Address

L1 Guest Real Address

L0 Host Real Address

Translate in
Software

Translate in
Software

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

94

L2 Guest Real Address

L1 Guest Real Address

L0 Host Real Address

● No PTE?
○ Fault in an entry

Translate in
Software

Translate in
Software

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

95

L2 Guest Real Address

L0 Host Real Address

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

96

L2 Guest Real Address

L0 Host Real Address

● Shadow Page Table for Nested
Guest

○ Combination of the two levels of
partition scoped translation

○ Hardware can access this mapping

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

97

Nested Address Translation
● What does the hardware end up

doing

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

98

Nested Address Translation
L2 Guest Effective Address (EA)

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

99

Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)

Process
Scoped

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

100

Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)

Process
Scoped

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

101

Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)

L0 Host Real Address (HRA)

Process
Scoped

Partition
Scoped

Hardware Address

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

102

Nested Address Translation
● To the hardware all guests are

the same
○ Process Table in guest memory

■ Associated with PID
■ EA -> GRA Mapping

○ Partition Scoped Page Table in L0
Host Memory

■ Associated with LPID
■ GRA -> HRA Mapping

● L0 Shadow Page Table just the
collapse of all Partition Scoped
Page Tables below it

○ Each level manages its own
mappings

L0 Partition Table

LPID
= 5

Partition Scoped Radix Tree

Process Table

6

Partition Scoped Radix Tree

Process Table

7

Partition Scoped Radix Tree

Process Table

8

Partition Scoped Radix Tree

Process Table

...And so on...

L2 Process Table (LPID = 8)

PID =
0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA

103

Breath

104

Nested Address Translation Invalidation
● We can insert nested address

translations
● But how do we invalidate them?

○ L1 invalidates a page it mapped through
to L2

○ L0 invalidates a page it mapped through
to L1

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

105

Process Scoped Invalidation
● L2 invalidating the L2 EA -> L2

GRA process scoped translation

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

106

● L2 invalidating the L2 EA -> L2
GRA process scoped translation

○ Process table is in L2 memory
■ L2 can invalidate ptes

○ L2 runs in supervisor mode
■ Able to use supervisor instructions

to invalidate the caching of these

● No hypervisor assistance required

Process Scoped Invalidation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

107

Partition Scoped Invalidation
● Invalidating entries in the Shadow

Page Table for the Nested Guest

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

108

Partition Scoped Invalidation
● L1 invalidates a page it mapped

through to L2
○ Invalidation of partition scoped

mappings requires HV privileged
instructions

○ Guest hypervisor uses an H-CALL
■ Provides L2 GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

109

Partition Scoped Invalidation
● L1 invalidates a page it mapped

through to L2
○ Invalidation of partition scoped

mappings requires HV privileged
instructions

○ Guest hypervisor uses an H-CALL
■ Provides L2 GRA

● Can walk our shadow page table
for the nested guest - keyed on L2
GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

110

Partition Scoped Invalidation
● L1 invalidates a page it mapped

through to L2
○ Invalidation of partition scoped

mappings requires HV privileged
instructions

○ Guest hypervisor uses an H-CALL
■ Provides L2 GRA

● Can walk our shadow page table
for the nested guest - keyed on L2
GRA

○ Invalidate PTE if any

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

111

Partition Scoped Invalidation
● L0 invalidates a page it mapped

through to L1
○ The page might also have been

mapped through to L2

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

112

Partition Scoped Invalidation
● L0 invalidates a page it mapped

through to L1
○ The page might also have been

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding
entry in the shadow page table for
the nested guest

○ This translation in the shadow page
table is keyed on L2 GRA

○ Only have L1 GRA

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

113

Partition Scoped Invalidation
● L0 invalidates a page it mapped

through to L1
○ The page might also have been

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding
entry in the shadow page table for
the nested guest

○ Keep an rmap (reverse mapping) which
stores the L1 GRA -> L2 GRA mapping
whenever an entry in the shadow page
table is created

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

114

Partition Scoped Invalidation
● L0 invalidates a page it mapped

through to L1
○ The page might also have been

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding
entry in the shadow page table for
the nested guest

○ Keep an rmap (reverse mapping) which
stores the L1 GRA -> L2 GRA mapping
whenever an entry in the shadow page
table is created

○ Use the L2 GRA to find and invalidate
any valid ptes

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

115

Partition Scoped Invalidation
● L0 invalidates a page it mapped

through to L1
○ A single L1 page may have been

mapped to multiple L2 guests
■ To accommodate this the rmap is

a list
■ Traverse the list and invalidate all

ptes in shadow pages tables for
all nested guests of the same L1
with a matching pte

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

9
Partition Scoped Radix Tree

Process Table

10 Partition Scoped Radix Tree

L1 Partition Table

LPI
D =
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

116

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest

1.

L1 L2

2.

EA-GRA-HRA

117

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest
● L1 -> L2 Guest Entry

1.

L1 L2

2.

EA-GRA-HRA

118

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

1.

L1 L2

2.

EA-GRA-HRA

119

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation

1.

L1 L2

2.

EA-GRA-HRA

120

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation
○ Shadow Page Table
○ rmap for invalidations

1.

L1 L2

2.

EA-GRA-HRA

121

So how do we make this happen?
● Two things needed to run a nested

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation
○ Shadow Page Table
○ rmap for invalidations

1.

L1 L2

2.

EA-GRA-HRA

122

Breath

123

Interesting Features
● Nested Nested

○ There is no reason L2 can’t run it’s own L3 nested
guest

○ L1 manages a shadow page table for L3
■ Just as L0 did for L2

○ L0 sees L3 as just another guest of L1
○ L0 manages its own shadow page table for L3

■ Just as it did for L2
○ L0 doesn’t know whether L3 is a guest of L2 or just

another guest of L1

L0 HRA

L3 EA

L3 GRA
Process
Scoped

Partition
Scoped

Partition
Scoped

L2 GRA

Partition
Scoped

L1 GRA

Partition
Scoped

Hardware

124

Interesting Features
● Theoretically possible to nest indefinitely

○ Given enough memory
○ …and time
○ ...and with some caveats

125

Interesting Features
● Migration of Nested Guests

○ Possible to migrate a L1 guest and all the nested guests below it
○ The state and memory of all the nested guests is stored in L1 memory

■ Already migrated as part of the migration stream
○ All of the state stored in L0 can be generated/allocated again on the receiving side

■ Except the location of the L1 partition table in L1 memory

L0 Hypervisor

L1 Guest HV

L2 Guest

L1 Guest HV

L0 Hypervisor

L2 Guest L2 Guest L2 Guest
126

Interesting Features
● Migration Between Levels

○ All pseries guests are technically the same
○ Possible to migrate a L2 guest to become a L1 guest
○ Possible to migrate a L1 guest to become a L2 guest
○ Assuming a transport between L0 and L1

L0 Hypervisor

L1 Guest HV

L2 Guest

L0 Hypervisor

L2 Guest

L0 Hypervisor

L1 Guest HV

L2 Guest

L1 Guest

127

Performance
● Kernel Compile

○ 40 Threads
○ 20G Memory
○ pseries_le_defconfig
○ make -j40 -s
○ Hot run to ensure page

tables populated
● Total Time Elapsed

128

How Many Levels Can You Nest?
● Ran a level 11 guest last week
● Significant slow down booting level 12

○ Due to the bouncing around of H-Calls

129

State of the Code
● KVM/Kernel

○ Patches in the kvm-next tree
○ Hopefully in 4.20

● QEMU
○ Patches posted to the list
○ Hopefully in 3.1 once the cap number in upstream

130

How to Use It?
● KVM/Kernel L0

○ echo Y > /sys/modules/kvm_hv/parameters/nested

● QEMU L0
○ qemu-system-ppc64 -machine pseries,cap-nested-hv=true

● KVM/Kernel L1
○ Requires the patch series to implement nested kvm
○ No other specific steps

● QEMU L1
○ Nothing special required

● Kernel L2
○ Nothing special required

131

Now you can run your own nested KVM-HV guests
● Thank you for listening

132

Questions?

133

A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the
L2 OS

■ OS Level Page Faults
■ Decrementer
■ System Call
■ etc.

L0 Hypervisor

L2 Guest

L1 Guest

134

A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
○ etc.

L0 Hypervisor

L2 Guest

L1 Guest

135

A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
○ etc.

● If handled return directly to L2

L0 Hypervisor

L2 Guest

L1 Guest

136

A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
○ etc.

● When required HV interrupts
delivered to L1

○ As part of return from H-CALL

L0 Hypervisor

L2 Guest

L1 Guest

H-CALL
Return

137

Interesting Features
● Emulated MMIO Passthrough

○ L0 emulates a device for L1
○ L1 sees it as a real device and passes it

through to L2
○ L0 emulates L2 accesses

L0 Hypervisor

L1 Guest HV

L2 Guest

Emulated
MMIO

Pass-
through

Emulated
MMIO

138

Limitations
● The L0 hypervisor, all nested hypervisors and all nested guests must use

radix translation
● If the host is scheduling on a per core level then only one nested vcpu can run

at a time on a core, the secondary threads will be idle
● A nested hypervisor can’t use a smaller page size than that of the hypervisors

in the levels above it
● There can only be 1023 guests on a system as a whole, irrespective of at

which level they run
○ Since the L0 hypervisor must allocate a real LPID for each

139

