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Who am I?
● Live in Canberra, Australia

● Work at Ozlabs, IBM Australia

● Virtualisation on Power
○ Linux/KVM

○ QEMU

● Ride Motorbikes
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This is going to go by quick
● If possible please keep questions to the end
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Some Terminology
● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor
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Level 0 (L0) - Host/Hypervisor OS

L0 Userspace
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● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor
○ L1 Guest (Hypervisor)

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) 
Guest OS

L0 Userspace

L1
Userspace

L1
Userspace

Level 1 (L1) 
Guest OS

Some Terminology
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● What is KVM?
● What is Nested KVM?

○ L0 Hypervisor
○ L1 Guest (Hypervisor)
○ L2 (Nested) Guest

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) 
Guest 
Hypervisor OS

L0 Userspace

L1
Userspace

L1
Userspace

Level 1 (L1)
Guest Hypervisor OS

Level 2 (L2)
Nested 
Guest OS

Level 2 (L2)
Nested 
Guest OS

L2 
Userspace

L2 
Userspace

Some Terminology
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Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR
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Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● 3 Privilege Levels - HV/SV/PR

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)
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○ x86
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Nested KVM-PR

KVM-HV

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● Nested KVM-PR
○ L1 guest runs in supervisor mode
○ L2 guest runs in userspace
○ L1 emulates supervisor instructions for L2

L0 Hypervisor

L1 Guest (Supervisor)

L2 Guest (Problem)

KVM-PR

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)

13



Nested KVM-PR

KVM-HV

Hasn’t this been done before?
● Feature already present in:

○ x86
○ ARM
○ s390
○ PowerPC

■ KVM-PR

● Nested KVM-PR
○ L1 guest runs in supervisor mode
○ L2 guest runs in userspace
○ L1 emulates supervisor instructions for L2

● Nested KVM-HV
○ L1 guest runs in supervisor mode
○ L2 guest runs in supervisor mode
○ No need to emulate supervisor instructions
○ L0 emulates hypervisor instructions for L1

Nested KVM-HV

L0 Hypervisor L0 Hypervisor

L1 Guest (Supervisor)

L2 Guest (Problem)

KVM-PR

KVM-HV

KVM-HV

L1 Guest (Supervisor)

L2 Guest (Supervisor)

Hypervisor (HV)

Supervisor/Privileged

Problem (PR)
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But Why?
● Testing

○ Openstack requires large number of 
hardware configurations

○ Able to test hypervisor changes in a 
virtualised environment

○ Able to test hypervisor management 
software

○ Able to test migration of hypervisors

● Ability to run guests even if already 
virtualised (e.g. the cloud)

● Faster development process
● Because we could!!!

¯\_(ツ)_/¯
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Breath
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So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside 

another KVM-HV guest
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So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside 

another KVM-HV guest
● Getting from the L1 guest into the 

L2 guest

1.

L1 L2
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So how do we make this happen?
● Nested KVM-HV
● Want to run a KVM-HV guest inside 

another KVM-HV guest
● Getting from the L1 guest into the 

L2 guest
● L2 guest address translation

○ Instruction Address
○ Data Address

1.

L1 L2

2.

EA-GRA-HRA
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What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
Hypervisor

1.

L1 L2

2.

EA-GRA-HRA

20



What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest

Hypervisor

Entry 
Path

1.

L1 L2

2.

EA-GRA-HRA
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What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

Hypervisor

Guest

Entry 
Path

1.

L1 L2

2.

EA-GRA-HRA

22



What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory

Hypervisor

Guest

Entry 
Path

Exit 
Path

1.

L1 L2

2.

EA-GRA-HRA
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What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory
○ Resume execution in the host

Hypervisor

Guest

Entry 
Path

Exit 
Path

1.

L1 L2

2.

EA-GRA-HRA
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What happens when you run a guest?
● L0 has the state of the L1 guest 

saved in memory
● Entry Path:

○ L0 decides to schedule L1 guest
○ Load L1 state onto the cpu
○ HRFID to guest
○ Guest is now executing

● Exit Path:
○ Interrupt returns control to L0 hypervisor
○ Save L1 state off the cpu into memory
○ Resume execution in the host

● L0 also maintains page tables to 
manage the partitioning of memory 
for the guest real address space

Hypervisor

Guest

Entry 
Path

Exit 
Path

1.

L1 L2

2.

EA-GRA-HRA
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Nested Guest Entry - Trap and Emulate
● L0 runs L1 L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

26



Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up 

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up 

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 executes HRFID
○ L0 knows L1 wants to enter its guest
○ L0 loads L2 state onto the cpu and 

HRFIDs

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

L2 Guest
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Nested Guest Entry - Trap and Emulate
● L0 runs L1
● L1 tries to run L2

○ L1 Supervisor mode
○ L1 uses KVM-HV entry path to load up 

L2 state
■ HV instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 executes HRFID
○ L0 knows L1 wants to enter its guest
○ L0 loads L2 state onto the cpu and 

HRFIDs
○ L2 guest is now executing in supervisor 

state just as L1 was

L0 Hypervisor

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T

L2 Guest
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Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately 
returns to L2

L0 Hypervisor

L1 Guest

L2 Guest

T

1.

L1 L2

2.

EA-GRA-HRA
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Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately 
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1

L0 Hypervisor

L1 Guest

L2 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately 
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2 

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately 
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2 

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 guest continues to execute as 

normal

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● Trap returns execution to L0

○ Trap handled by L0 and immediately 
returns to L2

● Trap which requires handling in L1
○ L0 forwards the trap down to L1
○ L1 uses the KVM exit path to save L2 

state
■ HV Instructions
■ HV SPRs

○ Trap to L0 and emulate
○ L1 guest continues to execute as 

normal

● Trap returns execution to L0
○ L1 waits to be scheduled again

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Nested Guest Entry - Trap and Emulate
● Trap and emulate approach is slow

○ Many context switches from L0 <-> L1 
to enter L2

○ Gets worse the deeper you nest

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA

T
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Is there a better way?
● Paravirtualise with an H-CALL L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

1.

L1 L2

2.

EA-GRA-HRA
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Is there a better way?
● Paravirtualise with an H-CALL
● H_ENTER_NESTED

○ L1 makes H-CALL to L0
■ Location in L1 memory of L2 state 

to use
■ L0 loads L2 state onto the cpu

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

H_ENTER_
NESTED

H-CALL 
Return

1.

L1 L2

2.

EA-GRA-HRA
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Is there a better way?
● Paravirtualise with an H-CALL
● H_ENTER_NESTED

○ L1 makes H-CALL to L0
■ Location in L1 memory of L2 state 

to use
■ L0 loads L2 state onto the cpu

○ Interrupt which needs handling in L1
■ Write L2 state back in to L1 

memory
■ L0 returns to L1 from H-CALL

L0 Hypervisor

L1 Guest

L2 Guest

L1 Guest

H_ENTER_
NESTED

H-CALL 
Return

1.

L1 L2

2.

EA-GRA-HRA
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What L0 Sees
● How much state does L0 have to 

track for L2
○ L2 state mainly stored in L1 memory

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) - 
Guest 
Hypervisor OS

Level 1 (L1) - 
Guest OS

1.

L1 L2

2.

EA-GRA-HRA
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What L0 Sees
● How much state does L0 have to 

track for L2
○ L2 state mainly stored in L1 memory

● Each nested guest essentially a 
“shadow” guest of L0

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) - 
Guest 
Hypervisor OS

Level 2 (L2) -
Nested Guest 
OS

Level 1 (L1) - 
Guest OS

Shadow 
Nested (L2) 
Guest

1.

L1 L2

2.

EA-GRA-HRA
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What L0 Sees
● How much state does L0 have to 

track for L2
○ L2 state mainly stored in L1 memory

● Each nested guest essentially a 
“shadow” guest of L0

● L0 must maintain some state for 
each nested guest

○ L1 LPID of this guest
○ Shadow L0 LPID for this guest
○ Shadow Page Tables
○ L2 Process Table

Level 0 (L0) - Host/Hypervisor OS

Level 1 (L1) - 
Guest 
Hypervisor OS

Level 2 (L2) -
Nested Guest 
OS

Level 1 (L1) - 
Guest OS

/*
 * Structure for a nested guest, that is, for a guest that is managed by
 * one of our guests.
 */
struct kvm_nested_guest {
        struct kvm *l1_host;            /* L1 VM that owns this nested guest */
        int l1_lpid;                    /* lpid L1 guest thinks this guest is */
        int shadow_lpid;                /* real lpid of this nested guest */
        pgd_t *shadow_pgtable;          /* our page table for this guest */
        u64 l1_gr_to_hr;                /* L1's addr of part'n-scoped table */
        u64 process_table;              /* process table entry for this guest */
        long refcnt;                    /* number of pointers to this struct */
        struct mutex tlb_lock;          /* serialize page faults and tlbies */
        struct kvm_nested_guest *next;
        cpumask_t need_tlb_flush;
        cpumask_t cpu_in_guest;
        short prev_cpu[NR_CPUS];
};

Shadow 
Nested (L2) 
Guest

1.

L1 L2

2.

EA-GRA-HRA
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What Now?
● Enter Nested Guest

○ We can load up a nested guest context 
and start executing

1.

L1 L2

2.

EA-GRA-HRA
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What Now?
● Enter Nested Guest

○ We can load up a nested guest context 
and start executing

● Nested Guest Address Translation
○ We will take a page fault on the first L2 

instruction
○ How do we translate L2 addresses?

1.

L1 L2

2.

EA-GRA-HRA
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Breath
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Guest Address Translation
● Two level radix tree translation to 

get to a hardware address

1.

L1 L2

2.

EA-GRA-HRA

Hardware Address
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Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

(Virtual Address)

Hardware Address
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Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

● Process Scoped Translation
○ Radix trees in L1 memory
○ Managed by L1 to divide its memory
○ Associated with PID
○ Results in a Guest Real Address

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Process 
Scoped

Hardware Address
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Guest Address Translation
● Two level radix tree translation
● Guest Effective Address

○ Analogous to a “Virtual Address”

● Process Scoped Translation
○ Radix trees in L1 memory
○ Managed by L1 to divide its memory
○ Associated with PID
○ Results in a Guest Real Address

● Partition Scoped Translation
○ Radix trees in L0 memory
○ Managed by L0 to divide its memory
○ Associated with LPID
○ Results in a Host Real Address

■ Hardware Address

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)

(Hardware Address)

Process 
Scoped

Partition 
Scoped

Hardware Address
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Guest Address Translation
● Guest EA

○ Virtual Address

● PID
○ Per Process ID
○ Used to tag cache entries
○ Used for Process Scoped Translation

● LPID
○ Per Logical Partition ID
○ Used to tag cache entries
○ Host has one

■ Normally 0
○ One allocated for each Guest

■ 1, 5, 127
■ Unique to that Guest

○ Used for Partition Scoped Translation

1.

L1 L2

2.

EA-GRA-HRA

Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)

(Hardware Address)

Process 
Scoped

Partition 
Scoped

Hardware Address
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Guest Address Translation
● All a bit hand wavy
● Let's walk through an example

○ EA -> HRA
○ LPID = 7
○ PID = 0

● Remember this is what the 
hardware is doing

1.

L1 L2

2.

EA-GRA-HRA
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Guest Address Translation
● Partition Table

○ In L0 memory
○ Entry per LPID
○ Pointer to partition scoped radix tree
○ Pointer to process table

■ In L1 memory

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA
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Guest Address Translation
● Index by LPID = 7
● Select Partition Table Entry

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA
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Process Scoped Address Translation
● Find the Process Table

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

1.

L1 L2

2.

EA-GRA-HRA
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● Index by PID = 0
● Select the Process Table Entry

○ Pointer to Process Scoped Radix Tree Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA
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● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA
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Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...

59



Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Process Scoped Radix 
Tree

● Translate Guest Effective Address 
(EA) to Guest Real Address (GRA)

○ By walking the radix tree

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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● We now have our Guest Real 
Address (GRA)

Guest Real Address (GRA)

Process Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

Process Table (LPID = 7)

PID = 0 Process Scoped Radix Tree

1 Process Scoped Radix Tree

2 Process Scoped Radix Tree

3 Process Scoped Radix Tree

..And so on...
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● Now need to do partition scoped 
translation

● Index by LPID = 7

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA
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● Now need to do partition scoped 
translation

● Index by LPID = 7
● Select the Partition Scoped Radix 

Tree

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA
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● Found the Partition Scoped Radix 
Tree

● Translate Guest Real Address 
(GRA) to a Host Real Address 
(HRA) 

○ By walking the radix tree

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA
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Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix 
Tree

● Translate Guest Real Address 
(GRA) to a Host Real Address 
(HRA) 

○ By walking the radix tree

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...
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Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix 
Tree

● Translate Guest Real Address 
(GRA) to a Host Real Address 
(HRA) 

○ By walking the radix tree

Partition Table

LPID 
= 5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...
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Partition Scoped Address Translation
1.
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● Found the Partition Scoped Radix 
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Partition Scoped Address Translation
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L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix 
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Partition Scoped Address Translation
1.

L1 L2

2.

EA-GRA-HRA

● Found the Partition Scoped Radix 
Tree

● Translate Guest Real Address 
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● We now have our Host Real 
Address (HRA)

○ Can do the hardware access
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Guest Address Translation
● Quick Recap
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Guest Address Translation
Guest Effective Address (EA)
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Guest Address Translation
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Guest Address Translation
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Guest Address Translation
Guest Effective Address (EA)

Guest Real Address (GRA)

Host Real Address (HRA)
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Nested Address Translation
● That seems pretty easy
● What about nested address 

translation?
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L1 L2

2.

EA-GRA-HRA
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Nested Address Translation
● L0 has a Partition Table for its 

guests
○ In L0 memory
○ Used to setup mappings for L1 GRA
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Nested Address Translation
● L0 has a Partition Table for its 

guests
● L1 has a Partition Table for its 

guests
○ In L1 memory
○ Used to setup mappings for L2 GRA
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Nested Address Translation
● L0 has a Partition Table for its 

guests
● L1 has a Partition Table for its 

guests
● Hardware can only know about one 

partition table
○ Could switch it

■ Flush caches
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Nested Address Translation
● L0 has a Partition Table for its 

guests
● L1 has a Partition Table for its 

guests
● Hardware only knows about one 

partition table
○ Could switch it

■ Flush caches
○ Each partition table only does a single 

level of translation
■ L2 GRA -> L1 GRA
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Nested Address Translation
● L0 has a Partition Table for its 

guests
● L1 has a Partition Table for its 

guests
● Hardware only knows about one 

partition table
○ Could switch it

■ Flush caches
○ Each partition table only does a single 

level of translation
■ L2 GRA -> L1 GRA
■ L1 GRA -> L0 HRA
■ Hardware needs

L2 GRA -> L0 HRA
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Nested Address Translation
● L0 allocates a “shadow LPID” for 

the nested guest
○ e.g. LPID = 8

● Create an entry in the L0 partition 
table

○ Will contain mappings for the Nested 
(L2) Guest

L0 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

1.

L1 L2

2.

EA-GRA-HRA

86



Process Scoped Nested Translation
● L2 process table is in L2 memory

○ Managed by L2
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Process Scoped Nested Translation
● L2 process table is in L2 memory

○ Managed by L2

● L0 can copy the process table from 
the L1 partition table into its entry 
for the “shadow LPID” allocated for 
the L2 guest

● Hardware can find the process 
table

○ L2 EA -> L2 GRA translation
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● What about Partition Scoped 
Translation?

○ Have a L2 GRA from process scoped
○ Need a hardware accessible mapping 

for L2 GRA -> L0 HRA translation
○ Hardware needs a single radix tree

■ Can’t just walk the two in the two 
partition tables

■ But software can
■ So let’s see what happens when 

we handle a page fault
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L2 Guest Real Address

● L2 GRA -> L1 GRA
● Mapping in L1 Partition Table

Partition Scoped Nested Translation
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L2 Guest Real Address

L1 Guest Real Address

Translate in 
Software
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L2 Guest Real Address

L1 Guest Real Address

● No PTE?
○ Synthesise interrupt to the L1 OS
○ L1 OS will fault in an entry
○ Can retry next time

Translate in 
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L2 Guest Real Address

L1 Guest Real Address

● L1 GRA -> L0 HRA
● Mapping in L0 Partition Table
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L2 Guest Real Address

L1 Guest Real Address

L0 Host Real Address

Translate in 
Software

Translate in 
Software
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L2 Guest Real Address

L1 Guest Real Address

L0 Host Real Address

● No PTE?
○ Fault in an entry

Translate in 
Software

Translate in 
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L2 Guest Real Address

L0 Host Real Address
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L2 Guest Real Address

L0 Host Real Address

● Shadow Page Table for Nested 
Guest

○ Combination of the two levels of 
partition scoped translation

○ Hardware can access this mapping

Partition Scoped Nested Translation
1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

97



Nested Address Translation
● What does the hardware end up

doing
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Nested Address Translation
L2 Guest Effective Address (EA)
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Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)
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Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)
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Nested Address Translation
L2 Guest Effective Address (EA)

L2 Guest Real Address (GRA)

L0 Host Real Address (HRA)

Process 
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Partition 
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Hardware Address
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Nested Address Translation
● To the hardware all guests are 

the same
○ Process Table in guest memory

■ Associated with PID
■ EA -> GRA Mapping

○ Partition Scoped Page Table in L0 
Host Memory

■ Associated with LPID
■ GRA -> HRA Mapping

● L0 Shadow Page Table just the 
collapse of all Partition Scoped 
Page Tables below it

○ Each level manages its own 
mappings
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Nested Address Translation Invalidation
● We can insert nested address 

translations
● But how do we invalidate them?

○ L1 invalidates a page it mapped through 
to L2

○ L0 invalidates a page it mapped through 
to L1
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Process Scoped Invalidation
● L2 invalidating the L2 EA -> L2 

GRA process scoped translation
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● L2 invalidating the L2 EA -> L2 
GRA process scoped translation

○ Process table is in L2 memory
■ L2 can invalidate ptes

○ L2 runs in supervisor mode
■ Able to use supervisor instructions 

to invalidate the caching of these

● No hypervisor assistance required

Process Scoped Invalidation
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Partition Scoped Invalidation
● Invalidating entries in the Shadow 

Page Table for the Nested Guest
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Partition Scoped Invalidation
● L1 invalidates a page it mapped 

through to L2
○ Invalidation of partition scoped 

mappings requires HV privileged 
instructions

○ Guest hypervisor uses an H-CALL
■ Provides L2 GRA
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Partition Scoped Invalidation
● L1 invalidates a page it mapped 

through to L2
○ Invalidation of partition scoped 

mappings requires HV privileged 
instructions

○ Guest hypervisor uses an H-CALL
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Partition Scoped Invalidation
● L1 invalidates a page it mapped 

through to L2
○ Invalidation of partition scoped 

mappings requires HV privileged 
instructions

○ Guest hypervisor uses an H-CALL
■ Provides L2 GRA

● Can walk our shadow page table 
for the nested guest - keyed on L2 
GRA

○ Invalidate PTE if any
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Partition Scoped Invalidation
● L0 invalidates a page it mapped 

through to L1
○ The page might also have been 

mapped through to L2
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Partition Scoped Invalidation
● L0 invalidates a page it mapped 

through to L1
○ The page might also have been 

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding 
entry in the shadow page table for 
the nested guest

○ This translation in the shadow page 
table is keyed on L2 GRA

○ Only have L1 GRA
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Partition Scoped Invalidation
● L0 invalidates a page it mapped 

through to L1
○ The page might also have been 

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding 
entry in the shadow page table for 
the nested guest

○ Keep an rmap (reverse mapping) which 
stores the L1 GRA -> L2 GRA mapping 
whenever an entry in the shadow page 
table is created
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Partition Scoped Invalidation
● L0 invalidates a page it mapped 

through to L1
○ The page might also have been 

mapped through to L2
○ KVM code provides L1 GRA here

● How do we find the corresponding 
entry in the shadow page table for 
the nested guest

○ Keep an rmap (reverse mapping) which 
stores the L1 GRA -> L2 GRA mapping 
whenever an entry in the shadow page 
table is created

○ Use the L2 GRA to find and invalidate 
any valid ptes

1.

L1 L2

2.

EA-GRA-HRA

L0 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

L1 Partition Table

LPI
D = 
5

Partition Scoped Radix Tree

Process Table

6
Partition Scoped Radix Tree

Process Table

7
Partition Scoped Radix Tree

Process Table

8
Partition Scoped Radix Tree

Process Table

...And so on...

115



Partition Scoped Invalidation
● L0 invalidates a page it mapped 

through to L1
○ A single L1 page may have been 

mapped to multiple L2 guests
■ To accommodate this the rmap is 

a list
■ Traverse the list and invalidate all 

ptes in shadow pages tables for 
all nested guests of the same L1 
with a matching pte
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So how do we make this happen?
● Two things needed to run a nested 

KVM-HV guest
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L1 L2
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EA-GRA-HRA
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So how do we make this happen?
● Two things needed to run a nested 

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED
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2.

EA-GRA-HRA

119



So how do we make this happen?
● Two things needed to run a nested 

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation
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So how do we make this happen?
● Two things needed to run a nested 

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation
○ Shadow Page Table
○ rmap for invalidations
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So how do we make this happen?
● Two things needed to run a nested 

KVM-HV guest
● L1 -> L2 Guest Entry

○ H-CALL H_ENTER_NESTED

● L2 Guest Address Translation
○ Shadow Page Table
○ rmap for invalidations
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2.
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Breath
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Interesting Features
● Nested Nested

○ There is no reason L2 can’t run it’s own L3 nested 
guest

○ L1 manages a shadow page table for L3
■ Just as L0 did for L2

○ L0 sees L3 as just another guest of L1
○ L0 manages its own shadow page table for L3

■ Just as it did for L2
○ L0 doesn’t know whether L3 is a guest of L2 or just 

another guest of L1

L0 HRA

L3 EA

L3 GRA
Process 
Scoped

Partition 
Scoped

Partition 
Scoped

L2 GRA

Partition 
Scoped

L1 GRA

Partition 
Scoped

Hardware
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Interesting Features
● Theoretically possible to nest indefinitely

○ Given enough memory
○ …and time
○ ...and with some caveats
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Interesting Features
● Migration of Nested Guests

○ Possible to migrate a L1 guest and all the nested guests below it
○ The state and memory of all the nested guests is stored in L1 memory

■ Already migrated as part of the migration stream
○ All of the state stored in L0 can be generated/allocated again on the receiving side

■ Except the location of the L1 partition table in L1 memory

L0 Hypervisor

L1 Guest HV

L2 Guest

L1 Guest HV

L0 Hypervisor

L2 Guest L2 Guest L2 Guest
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Interesting Features
● Migration Between Levels

○ All pseries guests are technically the same
○ Possible to migrate a L2 guest to become a L1 guest
○ Possible to migrate a L1 guest to become a L2 guest
○ Assuming a transport between L0 and L1

L0 Hypervisor

L1 Guest HV

L2 Guest

L0 Hypervisor

L2 Guest

L0 Hypervisor

L1 Guest HV

L2 Guest

L1 Guest
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Performance
● Kernel Compile

○ 40 Threads
○ 20G Memory
○ pseries_le_defconfig
○ make -j40 -s
○ Hot run to ensure page 

tables populated
● Total Time Elapsed
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How Many Levels Can You Nest?
● Ran a level 11 guest last week
● Significant slow down booting level 12

○ Due to the bouncing around of H-Calls
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State of the Code
● KVM/Kernel

○ Patches in the kvm-next tree
○ Hopefully in 4.20

● QEMU
○ Patches posted to the list
○ Hopefully in 3.1 once the cap number in upstream
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How to Use It?
● KVM/Kernel L0

○ echo Y > /sys/modules/kvm_hv/parameters/nested

● QEMU L0
○ qemu-system-ppc64 -machine pseries,cap-nested-hv=true

● KVM/Kernel L1
○ Requires the patch series to implement nested kvm
○ No other specific steps

● QEMU L1
○ Nothing special required

● Kernel L2
○ Nothing special required
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Now you can run your own nested KVM-HV guests
● Thank you for listening
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Questions?
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A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the 
L2 OS

■ OS Level Page Faults
■ Decrementer
■ System Call
■ etc.

L0 Hypervisor

L2 Guest

L1 Guest
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A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the 
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
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A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the 
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
○ etc.

● If handled return directly to L2

L0 Hypervisor

L2 Guest

L1 Guest
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A Quick Word on Interrupts
● L2 Runs in Supervisor Mode

○ OS Interrupts delivered directly to the 
L2 OS

● HV Interrupts delivered to L0
○ Hypervisor Page Fault
○ Hypervisor Decrementer
○ Hypervisor Doorbell
○ H-CALL (Hypervisor System Call)
○ etc.

● When required HV interrupts 
delivered to L1

○ As part of return from H-CALL

L0 Hypervisor

L2 Guest

L1 Guest

H-CALL 
Return
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Interesting Features
● Emulated MMIO Passthrough

○ L0 emulates a device for L1
○ L1 sees it as a real device and passes it 

through to L2
○ L0 emulates L2 accesses

L0 Hypervisor

L1 Guest HV

L2 Guest

Emulated 
MMIO

Pass-
through

Emulated 
MMIO
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Limitations
● The L0 hypervisor, all nested hypervisors and all nested guests must use 

radix translation
● If the host is scheduling on a per core level then only one nested vcpu can run 

at a time on a core, the secondary threads will be idle
● A nested hypervisor can’t use a smaller page size than that of the hypervisors 

in the levels above it
● There can only be 1023 guests on a system as a whole, irrespective of at 

which level they run
○ Since the L0 hypervisor must allocate a real LPID for each
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