
Copyright © Siemens AG 2011. All rights reserved.

Corporate Technology

Using KVM as a
Real-Time Hypervisor

Jan Kiszka, Siemens AG, CT T DE IT 1
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Slide 2 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Agenda

 Motivation & scenarios
 RT benchmark updates

 Improving QEMU RT performance
 Analysis of critical paths
 Steps to overcome latency spots

 Summary

Slide 3 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

Recall Last Year:
Why Using KVM in Embedded?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

Core 1 Core 2 Core 3 Core n

Slide 4 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

Recall Last Year:
Why Using KVM in Embedded?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

“But it would be nice to...”
 share some devices
 run upstream Linux

and latest Windows

Hypervisor

Core 1 Core 2 Core 3 Core n

Slide 5 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

Recall Last Year:
Why Using KVM in Embedded?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

“But it would be nice to...”
 share some devices
 run upstream Linux

and latest Windows

Hypervisor

 over-commit resources
 manage power

Hypervisor

Core 1 Core 2 Core 3 Core n

Slide 6 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

Recall Last Year:
Why Using KVM in Embedded?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

“But it would be nice to...”
 share some devices
 run upstream Linux

and latest Windows

Hypervisor

 over-commit resources
 manage power

Hypervisor backup / migrate guests
 use advanced HA features
 ...

Hypervisor

Core 1 Core 2 Core 3 Core n

Slide 7 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

...and in Real-Time Scenarios?
Pros & Cons

From partitioning hypervisors...
✚ High degree of temporal isolation
✚ Static allocations simplify RT guarantees

−Poor flexibility

−Non-commodity setup

Slide 8 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

...and in Real-Time Scenarios?
Pros & Cons

From partitioning hypervisors...
✚ High degree of temporal isolation
✚ Static allocations simplify RT guarantees

−Poor flexibility

−Non-commodity setup

... to full virtualization
−Usually not designed for RT

−Higher complexity makes establishing RT harder
✚ Benefit from large user base

 Guest support
 Test coverage

✚ Benefit from advanced virtualization features
✚ RT and SMP scalability share many requirements

Slide 9 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Typical Real-Time Guest Setups

Guest types
 Classic RTOS
 AMP (RTOS + x)
 GPOS with RT requirements

Guest interacts with real world – in real-time
 Real-time network (normal/RT Ethernet, fieldbuses, etc.)
 Digital & analogue I/O interfaces
 Data acquisition adapters

Interface access
 Pass-through, i.e. 1:1 mapping of periphery to guest
 Emulation

 Decoupling of guest driver and host hardware
 Physical interface sharing – or avoiding (test environments)

Slide 10 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Benchmark Updates

What is possible today?

Slide 11 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Timed Task Benchmarks:
Setup (1)

Host system
 Intel Core i7, 4 cores, 2 threads each

 OpenSUSE 11.4

 PREEMPT-RT kernel 2.6.33.9-rt31

 cyclictest measures timed task wakeup latency
 cyclictest -n -p 99 -h 500 -q

 Host-side load
 Cache benchmark loop
 calibrator 3392 8M outputfile

 I/O benchmark loop
 echo 1 > /proc/sys/vm/drop_caches ; bonnie -y -s 2000

 Load loops and cyclictest (for host benchmark) or guest VCPU
thread (for guest benchmark) bound to host CPU 0

Slide 12 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Timed Task Benchmarks:
Setup (2)

Guest system
 OpenSUSE 11.4

 PREEMPT-RT kernel 2.6.33.9-rt31

 qemu-kvm patched to allow prioritization

 VM configured to avoid latency-sensitive guest exits:
 -m 1G -drive file=guest.img,if=virtio
 -rt maxprio=80,paioprio=1 -nographic -vga none
 -netdev user,hostfwd=::2222-:22,id=net
 -net nic,netdev=net

 cyclictest measures timed guest task wakeup latency
 cyclictest -n -p 99 -h 500 -q

 Host-side load kept unchanged

Slide 13 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Timed Task Benchmarks:
Results after ~3h

cyclictest on host
Maximum: 29 µs

cyclictest on guest
Maximum: 112 µs

Note: Test length too short for reliable maxima

Slide 14 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

External Event Benchmark:
AMP RT Guest with Passed-Through NIC

Host configuration
 Base setup as before

 Intel i82541PI NIC as I/O device (no MSI)

 VM with 2 VCPUs

Guest properties
 GPOS and RTOS on different VCPUs

 RTOS only interacts with
 APIC & IO-APIC
 Assigned devices (here: PCI NIC)
=> no exits to QEMU user space

 GPOS requires full-blown virtualization, specifically VGA

Slide 15 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

External Event Benchmark:
Measuring Network Latency

External measurement system
 Linux/Xenomai with RTnet
 rtping @100 HZ

Load scenario
 hackbench 150 process 1000
 Disk I/O load on host
 ping -f from host to

GPOS guest (via tap+virtio)
 ftrace enabled for events

Worst case round-trip latency: 330 µs
(after 16 h)

Slide 16 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

External Event Benchmark:
Measuring Network Latency

External measurement system
 Linux/Xenomai with RTnet
 rtping @100 HZ

Load scenario
 hackbench 150 process 1000
 Disk I/O load on host
 ping -f from host to

GPOS guest (via tap+virtio)
 ftrace enabled for events

Worst case round-trip latency: 330 µs
(after 16 h)

Same scenario with emulated NIC: 100 ms – and more
(prioritized host NIC IRQ & RX Soft IRQ)

Slide 17 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

QEMU Still Ruining Latencies

Everything under qemu_global_mutex
 Remaining synchronous disk I/O

Note: observed io_submit() syscall latencies >1 s,
 paio architecture is immune

 Network I/O

 Terminal I/O

 X interaction (GUI updates)

 Dirty RAM log synchronization
(>10 ms on synchronize_srcu_expedited)

 ...and probably more

qemu_global_mutex is a no-go for RT code paths!

Slide 18 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Overcoming the Global Lock –
Road Works

CPUState
 Read/write access
 cpu_single_env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
 TX on network layer
 Write to character device
 Timer setup, etc.

Back-end events (iothread jobs)
 Network RX, read from chardev, timer signals, …

IRQ delivery
 Raising/lowering from device model to IRQ chip
 Injection into VCPU (if user space IRQ chips)

Slide 19 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Step 1: Localize CPUState

VCPU owns its CPUState
 No remote write unless VCPU is stopped

 Establish formal rule
(pre-exists for KVM core)

 Just few code changes required

cpu_current_env becomes per-CPU variable
 pthread_set/get_specific on UNIX

 Win32 requires wrapping

 Works with single TCG CPU thread as well

Slide 20 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Step 2: I/O Dispatching

Which device handles accessed memory region?

Critical path
 Walk memory map
 Obtain handler & device reference
 Invoke handler
 Done

Preferred approach: lock-less
 Modifications are rare
 Acquiring read-side lock is costly, may even deadlock

Solution: stop machine while modifying memory map
(pattern also used in kvm-tool)

Slide 21 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Step 3: Coalesced MMIO Handling

Coalesced MMIO ring as contention point
 One ring per-VM
 Readers must synchronize
 Currently protected by qemu_global_mutex

Short-term solution
 Skip flush if target device does not use coalesced MMIO
 Affects VGA and E1000 so far

Long-term solution
 One ring per-device – or MMIO region
 Socket-based ioeventfd may be the answer

Slide 22 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Step 4: IRQ Forwarding

Typical IRQ path
 Device changes level / generates edge
 IRQ routers (PCI host, bridges, IRQ remapper, etc.)

forward to interrupt controller
 Interrupt controller forwards to CPU
=> Routing involves multiple device models,

i.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
 Hacks exist to explore and monitor routes – on x86
=> Generic mechanism required

Fast path from device to target CPU
 No interaction with routing devices
 State changes (reroutes, blockings) reported to subscribers
 Routing device states can be updated on demand

Slide 23 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

The Harder Nuts –
Step 5: Concurrent Device Models

Mandatory
 Separate contexts to handle host-originated events
 Enables event prioritization and parallelizing
 iothread(s) can remain “best effort” zone(s)

Variant A
 Per-device lock for atomic sections
 Separate iothreads

Variant B
 Device server thread executes atomic sections

Slide 24 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Variant A: A Lock for Every Device

Per-device lock
 Protects atomic sections (PIO/MMIO requests, event processing)
 Can be taken over VCPU or I/O thread contexts

Separate I/O threads
 Process host-triggered work

 Device-related file descriptor callbacks
 Bottom-halves

 Granularity: device or group of devices

Downside
 MMIO addresses device, device issues DMA to another device

=> lock nestings, lock recursions, deadlocks
 Which lock to acquire in which order?
 Can we drop the device lock while calling core services?

Slide 25 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Variant B: Device Server Thread

Server thread runs device jobs
 Host-triggered work
 Complex guest-triggered work

Guest I/O requests forwarded to server
 Write requests can be synchronous and asynchronous
 Reads must be synchronous

Trivial I/O requests do not require server context
 get/set register without side effects

Thread ensures atomicity of device model
=> no locks required (famous last words...)

Downsides
 May require careful ordering of state changes
 May require use of atomics & barriers

Slide 26 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Work in Progress

QEMU activities
 Implement sketched road map
 Currently focusing on variant B
 Primary target

 E1000 device model
 KVM with in-kernel IRQ chips

Kernel activities
 Hunt & analyze potential latency spots (hundred µs range)
 Address IRQ thread management issue

Slide 27 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Implementation Footnote:
Fun with glibc and POSIX

 glibc's condition variables
 + priority inheritance mutexes
 = deadlock

Background
 Internal condvar locks aren't PI-aware
 Using PI locks unconditionally considered too heavy
 Lacking POSIX interface to declare PI for condvars
 Patches exist for pthread_condattr_setprotocol_np
 Ignored by glibc folks :-(

Workarounds
 Use priority ceiling

 Costly (one syscall per mutex lock/unlock)
 All participating threads must be SCHED_FIFO/RR

 Don't use condvars

Slide 28 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Summary

Many benefits of using KVM as RT hypervisor
 Full virtualization feature set
 Matured support for broad range of guests

Restricted RT support so far
 Works well without QEMU in the loop
 User space VM exits trigger huge latencies

Ongoing work to reduce restrictions
 Parallelize and prioritize QEMU device models
 Next goal: emulated RT networking
 Event loop latencies ≪1 ms in reach

Progress on real-time will improve SMP scalability as well!

Slide 29 2010-08-15 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Any Questions?

Thank you!

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

