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About Me

Introducing The Presenter

- QEMU contributor and maintainer for Cocoa, PReP,
stable-0.15, QOM-CPU

- Working on KVM at SUSE
- Level 3 support & feature development for SLE customers
- Maintenance of SLE and openSUSE gemu package

- Studying Software Eng. for Embedded Systems

- Aiming for a thesis on virtual development environments

SUSE.




Quo Vadis?

Outline Of This Presentation

- Introduction to QOM
- Remodeling the CPU with QOM
- Next steps




Introduction To QOM




QEMU

Conceptual Overview Of Device Emulation

» CPU-centric emulation!

- How: instructions (TCG only), PIO, MMIO

- Relevant: software-visible (black-box) behavior

- Irrelevant: simulation of inner workings / firmware

- QOM (formerly gdev) used for device encapsulation,
reuse and parameterization




QEMU Object Model

QOM Terminology

- Type
- Defines class
- Class
- Stores static data & virtual method pointers

- Lazily initialized from type and, optionally, static data
- Object

- Stores dynamic data (“chunk of allocated memory”)
- Property

- Accessor to dynamic object data

- Inspectable via monitor interface




A Simple Object Example

Declaration

static const Typelnfo example type_info = {
.name = "example",
parent = TYPE_OBJECT,

g

static void example_register_types(void) {
type register_ static(&example type_info);

}

type_init(example_register_types)




A Simple Object Example
Usage

- Add entry to Makefile.objs

- Instantiation

- Object *obj = object_new("example");

- Finalization:
- object_delete(obj);

- Note: More fine-grained control over lifetime and
memory Is available.




QOM Hooks

When What is Run

- type_init(): early during startup

- Typelnfo::.class_Init: when class is first created
- object_new() / object_initialize()
- object_class_foreach()

- Typelnfo::instance_Init: for each instance created
- object_new() / object_initialize()

- Typelnfo::instance_finalize: cleanup per instance

- object_delete() / object_finalize()




qdev

Device Modeling Before And After QOM
- Forest of busses: PCl, ISA, ... fallback: “SysBus”
- Two-stage construction via properties

- Hasn't changed ... much
- device_init() - type_init()
- Typelnfo, .class_init
- new type handling macros

- Possible to write a dummy device in < 10 minutes!
- Unit tests via gtest framework (some constraints!)




A Simple SysBusDevice Example

Declaration

#define TYPE_EXAMPLE = "example"

typedef struct ExampleState {
SysBusDevice parent;
MemoryRegion iomem);

} ExampleState;

static const Typelnfo example type_info ={
.name = TYPE_EXAMPLE,
parent = TYPE_SYS BUS DEVICE,
.instance_size = sizeof(ExampleState),
.class_init = example_class_init,

h

static void example_register_types(void) {
type register_static(&example_type_info);

}

type_init(example_register_types)




A Simple SysBusDevice Example

Implementation

#define EXAMPLE_STATE(obj) \
OBJECT_CHECK(ExampleState, (obj), TYPE_EXAMPLE)

static void example_device_init(SysBusDevice *dev) {
ExampleState *s = EXAMPLE_STATE(dev);
memory_region_init_io(&s->iomem, ...);
sysbus_init_mmio(dev, &s->iomem);

}

static void example_class_init(ObjectClass *oc, void *data) {
SysBusDeviceClass *sdc = SYS BUS DEVICE_CLASS(oc);
sdc->init = example_class_initfn,

}




A Simple SysBusDevice Example

Usage

- Add entry to Makefile.objs
- Instantiation

- DeviceState *dev = qdev_create("example");
- Realization:
- qdev_init_nofail(dev);

- Note: Today these are mostly wrapping QOM
functions and can be inlined for QOM migration.




QOM Conventions
Which Examples To Follow (1/3)

- DO use TYPE_FOO constants defined in a header
- DO use verbose macro names

- DO use names-separated-by-dashes

- DON'T duplicate literal string type names

- #define TYPE_EXAMPLE "example"
- .name = TYPE_EXAMPLE,

» object_new(TYPE_EXAMPLE)

- gdev_create(TYPE_EXAMPLE)




QOM Conventions
Which Examples To Follow (2/3)

- DO place parent field first
- DON'T use “busdev” or similar gdev conventions

- typedef struct MyState {
Object parent; /* or PClIDevice parent etc. */
uint32_t some_register_value;
} MyState,




QOM Conventions
Which Examples To Follow (3/3)

- DO use cast macros (based on struct layout)

- DON'T rely on DO_UPCAST() (field names)

- DO use per-type variable declarations

- Avoid using cast macros other than OBJECT() inline

- void do_something_with(MyDeviceState *s) {
PCIiDevice *pci = PCI_DEVICE(Ss);
pci->field = foo;

[* not s->pci.field or PCI(s)->field */




QOM ABI

Stability Rules

- Properties are externally visible (like command line)!
- A property MAY be

- dropped

- renamed

- But: A property MAY NOT change its type.




Remodeling The CPU With QOM




VCPU Use Cases

Data Center Meets System-on-a-Chip

i

- Homogeneous
environment (largely)

- Standardized machine

¢ b/ \,.f
R’

- Highly fragmented

hardware/software
landscape

- “Weird” hardware

- Long-running guests
- Live migration
- Hot-plug of resources

- Users: Sysadmins

IS out there in the wild!
- Heterogeneous cores

- Kernel bring-up, drivers...

- Users: Developers

SUSE.




CPU State

Data Layout Before QOM

CPU COMMON 7 Common fields at varying offset
B make it impossible to use
different CPUxxxStates at once!

cpu-defs.h



CPU State

New Data Layout With QOM

Ongoing migration




CPU State

Understanding The Migration

- CPUState can now be used in every file!
- CPUArchState is still dependent on cpu.h
» CPUArchState . CPUState: ENV_GET_CPU()

- CPUState — CPUArchState requires knowledge of
CPU type (no symmetry guarantees across targets)

- First set of fields was moved to CPUState for v1.3

SUSE




CPU State

API Guidelines

- New target-independent code should use CPUState

- Series adapting kvm_arch_*() under way

- Target-specific code should use FooCPU

- Provides easy access to both CPUFooState and new fields

- CPUArchState is usually reset by zeroing the front
part

- Pointers or persistent data needs to be in CPUFooState
behind CPU_COMMON,

- or in FooCPU — before CPUArchState if accessed by TCG

SUSE




CPU subclasses
How We Create vCPUs

- Subclasses prepared per -cpu name (~90% there)

- Currently flat hierarchy of, e.g., TYPE_OBJECT -
TYPE _CPU - TYPE_ARM_CPU - “cortex-a9”

- More advanced hierarchies of CPU families possible
(requested for sparc)

- Goal: Get rid of cpu_init() in favor of QOM/qdev

SUSE.




Next Steps




Reference Counting

Solving Object Finalization Issues

- Device is unplugged — but object still referenced

- Current solution: object_unparent()

- Drop object_delete() in favor of object_unref()?

- Less predictable whether or when memory is freed




Realization

Two-stage Initialization For All Objects

- I[dea: Generalize DeviceClass::init()
- void realizefn(Object *obj, Error **err)

- void unrealizefn(Object *obj) ?

- Provide “realized” property to inspect / set




Monitor Improvements
Extending QMP Plumbing For Handling Objects

- Today: gom-list, gom-get, gom-set
- gom-create?

- Currently device _add requires DeviceState




Static Properties For QOM?

Generalizing qdev Properties

- Facilitate read-only-when-realized

- Facilitate getters / setters for simple value types?
- How to handle global default values?

- Suggestions and patches welcome!

SUSE.




Preparing For CPU Hotplug

Standardizing CPU Creation and Initialization

- Make the CPU a device

- Add qdev support to linux-user / bsd-user for v1.3

- Properties for x86 CPU manipulation / inspection

- Versioning of CPU models via global qdev properties?

SUSE.




QOM'ifying SoCs
Using QOM For Grouping Of Devices
- Early prototype: SuperH 7750
- Drafts: Tegra2
- Common pattern: one SoC on multiple boards

- Helper function for CPU and device creation

- Idea: Group in inspectable way using QOM Container
- Open issues:

- How to deal with -cpu?

- Static properties for parameterization?

SUSE.




Spreading QOM

Standardizing Object Creation and Initialization Elsewhere

- blockdev?

- chardev?

- hetdev?




Submit your models upstream
to not get left behind!
WWW.Jemu.org

Thank you.

USE

®
We adapt. You succeed.




SUSE

We adapt. You succeed.



SE.

We adapt. You succeed.

Corporate Headquarters +49 911 740 53 0 (Worldwide) Join us on:
Maxfeldstrasse 5 WWW.Suse.com WWW.0pensuse.org
90409 Nuremberg

Germany
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