QOM Vadis?

Taking Objects To The CPU And Beyond

Andreas Farber, B.Sc.
Expert Virtualization
SUSE LINUX Products GmbH

About Me

Introducing The Presenter

- QEMU contributor and maintainer for Cocoa, PReP,
stable-0.15, QOM-CPU

- Working on KVM at SUSE
- Level 3 support & feature development for SLE customers
- Maintenance of SLE and openSUSE gemu package

- Studying Software Eng. for Embedded Systems

- Aiming for a thesis on virtual development environments

SUSE.

Quo Vadis?

Outline Of This Presentation

- Introduction to QOM
- Remodeling the CPU with QOM
- Next steps

Introduction To QOM

QEMU

Conceptual Overview Of Device Emulation

» CPU-centric emulation!

- How: instructions (TCG only), PIO, MMIO

- Relevant: software-visible (black-box) behavior

- Irrelevant: simulation of inner workings / firmware

- QOM (formerly gdev) used for device encapsulation,
reuse and parameterization

QEMU Object Model

QOM Terminology

- Type
- Defines class
- Class
- Stores static data & virtual method pointers

- Lazily initialized from type and, optionally, static data
- Object

- Stores dynamic data (“chunk of allocated memory”)
- Property

- Accessor to dynamic object data

- Inspectable via monitor interface

A Simple Object Example

Declaration

static const Typelnfo example type_info = {
.name = "example",
parent = TYPE_OBJECT,

g

static void example_register_types(void) {
type register_ static(&example type_info);

}

type_init(example_register_types)

A Simple Object Example
Usage

- Add entry to Makefile.objs

- Instantiation

- Object *obj = object_new("example");

- Finalization:
- object_delete(obj);

- Note: More fine-grained control over lifetime and
memory Is available.

QOM Hooks

When What is Run

- type_init(): early during startup

- Typelnfo::.class_Init: when class is first created
- object_new() / object_initialize()
- object_class_foreach()

- Typelnfo::instance_Init: for each instance created
- object_new() / object_initialize()

- Typelnfo::instance_finalize: cleanup per instance

- object_delete() / object_finalize()

qdev

Device Modeling Before And After QOM
- Forest of busses: PCl, ISA, ... fallback: “SysBus”
- Two-stage construction via properties

- Hasn't changed ... much
- device_init() - type_init()
- Typelnfo, .class_init
- new type handling macros

- Possible to write a dummy device in < 10 minutes!
- Unit tests via gtest framework (some constraints!)

A Simple SysBusDevice Example

Declaration

#define TYPE_EXAMPLE = "example"

typedef struct ExampleState {
SysBusDevice parent;
MemoryRegion iomem);

} ExampleState;

static const Typelnfo example type_info ={
.name = TYPE_EXAMPLE,
parent = TYPE_SYS BUS DEVICE,
.instance_size = sizeof(ExampleState),
.class_init = example_class_init,

h

static void example_register_types(void) {
type register_static(&example_type_info);

}

type_init(example_register_types)

A Simple SysBusDevice Example

Implementation

#define EXAMPLE_STATE(obj) \
OBJECT_CHECK(ExampleState, (obj), TYPE_EXAMPLE)

static void example_device_init(SysBusDevice *dev) {
ExampleState *s = EXAMPLE_STATE(dev);
memory_region_init_io(&s->iomem, ...);
sysbus_init_mmio(dev, &s->iomem);

}

static void example_class_init(ObjectClass *oc, void *data) {
SysBusDeviceClass *sdc = SYS BUS DEVICE_CLASS(oc);
sdc->init = example_class_initfn,

}

A Simple SysBusDevice Example

Usage

- Add entry to Makefile.objs
- Instantiation

- DeviceState *dev = qdev_create("example");
- Realization:
- qdev_init_nofail(dev);

- Note: Today these are mostly wrapping QOM
functions and can be inlined for QOM migration.

QOM Conventions
Which Examples To Follow (1/3)

- DO use TYPE_FOO constants defined in a header
- DO use verbose macro names

- DO use names-separated-by-dashes

- DON'T duplicate literal string type names

- #define TYPE_EXAMPLE "example"
- .name = TYPE_EXAMPLE,

» object_new(TYPE_EXAMPLE)

- gdev_create(TYPE_EXAMPLE)

QOM Conventions
Which Examples To Follow (2/3)

- DO place parent field first
- DON'T use “busdev” or similar gdev conventions

- typedef struct MyState {
Object parent; /* or PClIDevice parent etc. */
uint32_t some_register_value;
} MyState,

QOM Conventions
Which Examples To Follow (3/3)

- DO use cast macros (based on struct layout)

- DON'T rely on DO_UPCAST() (field names)

- DO use per-type variable declarations

- Avoid using cast macros other than OBJECT() inline

- void do_something_with(MyDeviceState *s) {
PCIiDevice *pci = PCI_DEVICE(Ss);
pci->field = foo;

[* not s->pci.field or PCI(s)->field */

QOM ABI

Stability Rules

- Properties are externally visible (like command line)!
- A property MAY be

- dropped

- renamed

- But: A property MAY NOT change its type.

Remodeling The CPU With QOM

VCPU Use Cases

Data Center Meets System-on-a-Chip

i

- Homogeneous
environment (largely)

- Standardized machine

¢ b/ \,.f
R’

- Highly fragmented

hardware/software
landscape

- “Weird” hardware

- Long-running guests
- Live migration
- Hot-plug of resources

- Users: Sysadmins

IS out there in the wild!
- Heterogeneous cores

- Kernel bring-up, drivers...

- Users: Developers

SUSE.

CPU State

Data Layout Before QOM

CPU COMMON 7 Common fields at varying offset
B make it impossible to use
different CPUxxxStates at once!

cpu-defs.h

CPU State

New Data Layout With QOM

Ongoing migration

CPU State

Understanding The Migration

- CPUState can now be used in every file!
- CPUArchState is still dependent on cpu.h
» CPUArchState . CPUState: ENV_GET_CPU()

- CPUState — CPUArchState requires knowledge of
CPU type (no symmetry guarantees across targets)

- First set of fields was moved to CPUState for v1.3

SUSE

CPU State

API Guidelines

- New target-independent code should use CPUState

- Series adapting kvm_arch_*() under way

- Target-specific code should use FooCPU

- Provides easy access to both CPUFooState and new fields

- CPUArchState is usually reset by zeroing the front
part

- Pointers or persistent data needs to be in CPUFooState
behind CPU_COMMON,

- or in FooCPU — before CPUArchState if accessed by TCG

SUSE

CPU subclasses
How We Create vCPUs

- Subclasses prepared per -cpu name (~90% there)

- Currently flat hierarchy of, e.g., TYPE_OBJECT -
TYPE _CPU - TYPE_ARM_CPU - “cortex-a9”

- More advanced hierarchies of CPU families possible
(requested for sparc)

- Goal: Get rid of cpu_init() in favor of QOM/qdev

SUSE.

Next Steps

Reference Counting

Solving Object Finalization Issues

- Device is unplugged — but object still referenced

- Current solution: object_unparent()

- Drop object_delete() in favor of object_unref()?

- Less predictable whether or when memory is freed

Realization

Two-stage Initialization For All Objects

- I[dea: Generalize DeviceClass::init()
- void realizefn(Object *obj, Error **err)

- void unrealizefn(Object *obj) ?

- Provide “realized” property to inspect / set

Monitor Improvements
Extending QMP Plumbing For Handling Objects

- Today: gom-list, gom-get, gom-set
- gom-create?

- Currently device _add requires DeviceState

Static Properties For QOM?

Generalizing qdev Properties

- Facilitate read-only-when-realized

- Facilitate getters / setters for simple value types?
- How to handle global default values?

- Suggestions and patches welcome!

SUSE.

Preparing For CPU Hotplug

Standardizing CPU Creation and Initialization

- Make the CPU a device

- Add qdev support to linux-user / bsd-user for v1.3

- Properties for x86 CPU manipulation / inspection

- Versioning of CPU models via global qdev properties?

SUSE.

QOM'ifying SoCs
Using QOM For Grouping Of Devices
- Early prototype: SuperH 7750
- Drafts: Tegra2
- Common pattern: one SoC on multiple boards

- Helper function for CPU and device creation

- Idea: Group in inspectable way using QOM Container
- Open issues:

- How to deal with -cpu?

- Static properties for parameterization?

SUSE.

Spreading QOM

Standardizing Object Creation and Initialization Elsewhere

- blockdev?

- chardev?

- hetdev?

Submit your models upstream
to not get left behind!
WWW.Jemu.org

Thank you.

USE

®
We adapt. You succeed.

SUSE

We adapt. You succeed.

SE.

We adapt. You succeed.

Corporate Headquarters +49 911 740 53 0 (Worldwide) Join us on:
Maxfeldstrasse 5 WWW.Suse.com WWW.0pensuse.org
90409 Nuremberg

Germany

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36

