
Torwards a more Scalable KVM Hypervisor

KVM FORUM 2018
Wanpeng Li 

wanpengli@tencent.com



Agenda

• Paravirtualized TLB shootdown
• Exitless IPIs
• Disable mwait/hlt/pause vmexits to improve latency



TLB Shootdown Preemption

• When executing inside a virtual machine environment, OS level 
synchronization primitives such as locking, tlb shootdown and RCU are 
faced with significant challenges due to the scheduling behavior of the 
underlying host scheduler. Operations that are ensured to last only a 
short amount of time on bare-metal hardware, are capable of taking 
considerably longer when running virtualized.



TLB Shootdown Preemption

• A TLB is a cache of translation from memory virtual address to physical 
address. When a CPU changes virtual to physical mapping of an 
address, it needs to invalidate other CPUs' stale mapping in their 
respective caches. This process is called TLB shootdown.

• Modern operating systems consider TLB shootdown operations to be 
performance critical and so optimize them to exhibit very low latency. 
The implementation of these operations is therefore architected to 
ensure that shootdowns can be completed with very low latencies 
through the use of IPI based signalling. 



TLB Shootdown Preemption

• Remote TLB flush does a busy wait which is fine in bare-metal scenario. 
But with-in the guest, the vCPUs might have been pre-empted or 
blocked. In this scenario, the initiator vCPU would end up busy-waiting 
for a long amount of time; it also consumes CPU unnecessarily to wake 
up the target of the shootdown.



TLB Shootdown Preemption

CDF of dedup benchmark TLB 
Shootdown Latency

• The time between the preemption and rescheduling of a remote target 
vCPU is often orders of magnitude larger than the latency that TLB 
Shootdown operations were designed for.  



TLB Shootdown Preemption Mitigation

• The paravirtualized TLB shootdown does not wait for vCPUs that are 
sleeping, instead KVM will flush the TLB as soon as the vCPU starts 
running again. The improvement is clearly visible when the host is 
overcommitted; in this case, the PV TLB flush (in addition to avoiding 
the wait on the main CPU) prevents preempted vCPUs from stealing 
precious execution time from the running ones.



TLB Shootdown Preemption Mitigation

• The caching translation information while EPT is in use:
–guest-physical mapping = guest physical to host physical, page-structure-cache 

entries
–combined mapping = guest virtual to host physical, page-structure-cache 

entries
• Operation that architecturally invalidate entries in the TLBs or paging-

structure caches e.g. INVLPG will invalidate combined mapping while 
EPT is in use. 

• INVEPT invalidates guest-physical and combined mappings.
• INVVPID invalidates combined mapping while EPT is in use.



TLB Shootdown Preemption Mitigation

• KVM_VCPU_PREEMPED flag
–The flag is recorded to the memory which is shared between the guest and 

the host when preemption notifier on the host notifies the vCPU is preempted 
and be scheduled out.

–The flag will be cleared before next vmentry. 

• pv_mmu_ops.flush_tlb_others
–call IPIs for active vCPUs and record another KVM_VCPU_FLUSH_TLB flag for 

pre-empted vCPUs.
–KVM will just do the flush via INVVPID on the guest's behalf the next time the 

vCPU is scheduled if KVM_VCPU_FLUSH_TLB flag is set



TLB Shootdown Preemption Mitigation

Evaluation Environment:
Hardware: Xeon Gold 6142 2.6GHz 2 sockets, 32 cores, 64 threads
VM           : each 64 vCPUs
Test case : ebizzy -M
(ebizzy is designed to generate a workload resembling common web application 
server workloads. It is highly threaded, has a large in-memory working set, and 
allocates and deallocates memory frequently. )



TLB Shootdown Preemption Mitigation

Evaluation Result:

4%
78%

132%

49%
65%



 Exitless IPIs

• x2APIC in linux kernel:
–Cluster mode: send IPI per Cluster(max 16 logical cpus per Cluster)
–Phyiscal mode: send IPI one by one

• Each writes to ICR register will cause a vmexit, multicast IPIs and 
“Function Call interrupts” make it worse when scaling to large VMs.



 Exitless IPIs

• Set the destination to bitmap in the guest.
• Use a hypercall to send IPIs to multiple vCPUs. The hypercall lets a 

guest send multicast IPIs, with at most 128 destinations per hypercall 
in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode. 

• The destinations are represented by a bitmap contained in the first 
two arguments. The bitmap will be scaned to send IPIs to the target 
vCPUs.



 Exitless IPIs

time-consuming

less is better

Evaluation Environment:
Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads
VM           : 80 vCPUs
Test case : IPI microbenchmark

Evaluation Result:

154%

22%



Disable mwait/hlt/pause vmexits to improve latency

Allow userspace to disable MWAIT/HLT/PAUSE vmexits, a guest can put a 
(physical) CPU into a power saving state. The other CPUs in the same 
package can get turbo boost on demand when comparing to idle=poll.

133%



Disable mwait/hlt/pause vmexits to improve latency

40% 13%

Evaluation Environment:
test case 1: two VMs, each 4 vCPUs, both idle=poll, one running Unixbench 
test case 2: two VMs, each 4 vCPUs, both disable mwait vmexit, one running Unixbench



Disable mwait/hlt/pause vmexits to improve latency

idle=poll in guest disable mwait vmexit



Reference

• https://lkml.org/lkml/2017/12/12/1300
• https://git.qemu.org/?p=qemu.git;a=commitdiff;h=6976af663d3a19d1
• https://lkml.org/lkml/2018/7/23/108
• https://git.qemu.org/?p=qemu.git;a=commit;h=7f710c32bb893c68b9

31c68265f0427c032eb7f4
• https://lkml.org/lkml/2018/3/12/359
• https://lists.gnu.org/archive/html/qemu-devel/2018-

06/msg06794.html



                                                 Q/A？


