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Introduction

➔ overview of mode switch overhead

➔ description of recent kvm improvements



  

➔ Special processor mode which allows guest code to run natively 
most of the time, except for certain operations which trap back to 
the hypervisor.

Normal execution level

Guest execution level

A: Hypervisor enters guest 
mode 

A B

B: event causes exit 
  back to hypervisor

X86 hardware assisted virtualization



  

Mode switch is expensive 

1) save host context
2) vm entry
3) vm resume
4) restore host context

Solutions:

➔ Reduce number of exits (eg. virtio, TDP)
➔ Reduce processing time of an exit



  

PIO write exit timings, i7 2.6GHz

0) out

1) host acquires control        400 cycles (+400)

2) exit handler runs        800 cycles (+400)

3) kernel pio search ends        1800 cycles (+1000)

4) all host state restored           3800 cycles (+2000)
     (MSRs, FPU)

5) qemu returns to kernel         6700 cycles (+3000)

6) guest state reloaded             8500 cycles (+1800)
    (MSRs, FPU)

7) guest entry                            9600 cycles (+1100)

8) back to guest mode        10400 cycles (+800)
             



  

➔ xAPIC accessed via memory mapped IO.

➔ On access a vmexit is generated (pagefault / apic 
access).

➔ KVM has to decode instruction, and translate virtual 
address.

➔ EOI is most frequent exit  for common workloads.
  

APIC accesses



  

➔ Next generation APIC.

➔ RDMSR / WRMSR (read/write model specific register) as 
the interface.

➔ No need to decode instruction, address and value  
available in registers.

  

x2APIC



  

➔ EOI 4677 cycles vs 2366 cycles (approx 100% 
improvement).

  

x2APIC performance



  

KVM memslots

userspace address

start_gfn len



  

➔ Certain devices emulated in-kernel for performance 
reasons (APIC, IO-APIC, PIT).

➔ Registered ranges in the PIO or memory space.
  

KVM in-kernel device emulation



  

➔ Memslots and in-kernel device ranges protected by a 
read-write semaphore.

➔ Taken on every exit.

➔ Cacheline bouncing.

slots_lock 



  

1) Atomically publish new structure.

2) Wait for grace period.

3) Free old structure.

➔ SRCU is similar, but grace period requires verifying 
potential readers left critical section.

RCU



  

➔ Good candidate for SRCU.

➔ But grace period is slow, 10ms (SYSLINUX using 
VGABIOS to draw text).

➔ synchronize_srcu_expedited, to force context switch.

➔ IRQ injection path also converted to RCU.

  

SRCU for slots_lock



  

  

SRCU results



  

Lightweight / heavy weight exit

 qemu

guest

host kernel

guest

host kernel

qemu



  

 

      

  

Sched notifiers

 qemu

guest

host kernel host kernel

 thread X

Heavy weight exit  on context switch



  

➔ System calls traditionally implemented using software 
interrupt on x86.

➔ Fast system call use dedicated MSRs:
- SYSCALL/RET, RIP <- MSR_IA32_LSTAR.

       - SYSENTER/EXIT, MSR_SYSENTER_{CS,EIP,ESP}.

➔ swapgs:
- GS <- MSR_KERNELGSBASE

      

  

Fast syscall and swapgs



  

➔ Guests have direct access to these MSRs.

➔ Not automatically saved/restored by hardware (* except 
SYSENTER_{CS,ESP,EIP} on VMX).

➔ On context switch or return to userspace, KVM must 
restore host values.

Fast syscall MSRs and KVM



  

➔ Host kernel does not make use of such MSRs.

➔ User return notifiers allow distinction between kernel and 
userspace context switch.

Last minute MSR restoration



  

 

      

  

User return notifiers

 qemu

MSR restoration moved from point A to point B

guest

host kernel  kernel thread y host kernel

process x

A

B



  

 

      

  

No need to save/restore MSRs on guest -> kernel 
thread -> guest switch

 qemu

guest

host kernel  kernel thread y

guest

host kernel

 qemu

User return notifiers



  

➔ Improves guest -> idle thread -> guest switches by about 
2000 cycles.

➔ Avoids save/restore when guest/host values are equal.

Last minute MSR restoration



  

➔ Set of registers and instructions for operations on floating 
point  numbers.

➔ FPU state: 8 data registers and 7 control registers.

X86's FPU



  

➔ Expensive on every context switch / not always used.

➔ CR0.TS (Task Switched) allows FPU state to be 
saved/restored on demand. If set, FPU instructions 
generate #NM exception.

➔ If a given task used the FPU during its time slice, OS can 
save FPU state on context switch. 

X86's lazy FPU switching



  

➔ If a vcpus CR0.TS flag is set, KVM intercepts #NM 
exception, and enters guest with host FPU state.

➔ When guest uses FPU, #NM exception is triggered, 
handler in KVM loads guest state and disables #NM 
interception.

➔ If TS clear, guest FPU loaded unconditionally.

➔ Host FPU reloaded on heavy exit.

➔ Unconditional CR0.TS trap, suboptimal.

    KVM FPU handling



  

➔ If guest FPU is loaded, CR0.TS value is of no interest.

➔ Allow direct CR0.TS access.

➔ Task switching between processes that use FPU in guest 
require no exit.

Direct guest access to CR0.TS 



  

➔ fbench modified to context switch.

➔ 4 simultaneous processes on 1 vcpu guest.

➔ 200k vs 100k exits per second.

Direct CR0.TS numbers



  

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction



  

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to 
registers, sets task->status TS_USEDFPU bit

TS_USEDFPU



  

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to 
registers, sets task->status TS_USEDFPU bit
3) scheduler begins switch from thread A to thread B

TS_USEDFPU



  

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to 
registers, sets task->status TS_USEDFPU bit
3) scheduler begins switch from thread A to thread B
4) unlazy_fpu(thread A) sees TS_USEDFPU bit, saves FPU registers to 
thread A state.

TS_USEDFPU

unlazy_fpu(thread A)



  

➔ Unconditional saving of hosts FPU state on guest FPU 
load (and restore on heavy exit / preemption).

➔ Switch to unlazy_fpu.

➔ Host FPU saved/restored on demand, only when qemu 
thread has made use of FPU.

Linux lazy FPU for qemu -> guest switch



  

➔ In-kernel device search

➔ Instruction emulation

➔ What else can be shared??

Optimization TODO's



  

Questions / comments ?
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