

A Walkthrough on some recent KVM performance improvements

 Marcelo Tosatti, Red Hat
 KVM Forum 2010

Introduction

➔ overview of mode switch overhead

➔ description of recent kvm improvements

➔ Special processor mode which allows guest code to run natively
most of the time, except for certain operations which trap back to
the hypervisor.

Normal execution level

Guest execution level

A: Hypervisor enters guest
mode

A B

B: event causes exit
 back to hypervisor

X86 hardware assisted virtualization

Mode switch is expensive

1) save host context
2) vm entry
3) vm resume
4) restore host context

Solutions:

➔ Reduce number of exits (eg. virtio, TDP)
➔ Reduce processing time of an exit

PIO write exit timings, i7 2.6GHz

0) out

1) host acquires control 400 cycles (+400)

2) exit handler runs 800 cycles (+400)

3) kernel pio search ends 1800 cycles (+1000)

4) all host state restored 3800 cycles (+2000)
 (MSRs, FPU)

5) qemu returns to kernel 6700 cycles (+3000)

6) guest state reloaded 8500 cycles (+1800)
 (MSRs, FPU)

7) guest entry 9600 cycles (+1100)

8) back to guest mode 10400 cycles (+800)

➔ xAPIC accessed via memory mapped IO.

➔ On access a vmexit is generated (pagefault / apic
access).

➔ KVM has to decode instruction, and translate virtual
address.

➔ EOI is most frequent exit for common workloads.

APIC accesses

➔ Next generation APIC.

➔ RDMSR / WRMSR (read/write model specific register) as
the interface.

➔ No need to decode instruction, address and value
available in registers.

x2APIC

➔ EOI 4677 cycles vs 2366 cycles (approx 100%
improvement).

x2APIC performance

KVM memslots

userspace address

start_gfn len

➔ Certain devices emulated in-kernel for performance
reasons (APIC, IO-APIC, PIT).

➔ Registered ranges in the PIO or memory space.

KVM in-kernel device emulation

➔ Memslots and in-kernel device ranges protected by a
read-write semaphore.

➔ Taken on every exit.

➔ Cacheline bouncing.

slots_lock

1) Atomically publish new structure.

2) Wait for grace period.

3) Free old structure.

➔ SRCU is similar, but grace period requires verifying
potential readers left critical section.

RCU

➔ Good candidate for SRCU.

➔ But grace period is slow, 10ms (SYSLINUX using
VGABIOS to draw text).

➔ synchronize_srcu_expedited, to force context switch.

➔ IRQ injection path also converted to RCU.

SRCU for slots_lock

SRCU results

Lightweight / heavy weight exit

 qemu

guest

host kernel

guest

host kernel

qemu

Sched notifiers

 qemu

guest

host kernel host kernel

 thread X

Heavy weight exit on context switch

➔ System calls traditionally implemented using software
interrupt on x86.

➔ Fast system call use dedicated MSRs:
- SYSCALL/RET, RIP <- MSR_IA32_LSTAR.

 - SYSENTER/EXIT, MSR_SYSENTER_{CS,EIP,ESP}.

➔ swapgs:
- GS <- MSR_KERNELGSBASE

Fast syscall and swapgs

➔ Guests have direct access to these MSRs.

➔ Not automatically saved/restored by hardware (* except
SYSENTER_{CS,ESP,EIP} on VMX).

➔ On context switch or return to userspace, KVM must
restore host values.

Fast syscall MSRs and KVM

➔ Host kernel does not make use of such MSRs.

➔ User return notifiers allow distinction between kernel and
userspace context switch.

Last minute MSR restoration

User return notifiers

 qemu

MSR restoration moved from point A to point B

guest

host kernel kernel thread y host kernel

process x

A

B

No need to save/restore MSRs on guest -> kernel
thread -> guest switch

 qemu

guest

host kernel kernel thread y

guest

host kernel

 qemu

User return notifiers

➔ Improves guest -> idle thread -> guest switches by about
2000 cycles.

➔ Avoids save/restore when guest/host values are equal.

Last minute MSR restoration

➔ Set of registers and instructions for operations on floating
point numbers.

➔ FPU state: 8 data registers and 7 control registers.

X86's FPU

➔ Expensive on every context switch / not always used.

➔ CR0.TS (Task Switched) allows FPU state to be
saved/restored on demand. If set, FPU instructions
generate #NM exception.

➔ If a given task used the FPU during its time slice, OS can
save FPU state on context switch.

X86's lazy FPU switching

➔ If a vcpus CR0.TS flag is set, KVM intercepts #NM
exception, and enters guest with host FPU state.

➔ When guest uses FPU, #NM exception is triggered,
handler in KVM loads guest state and disables #NM
interception.

➔ If TS clear, guest FPU loaded unconditionally.

➔ Host FPU reloaded on heavy exit.

➔ Unconditional CR0.TS trap, suboptimal.

 KVM FPU handling

➔ If guest FPU is loaded, CR0.TS value is of no interest.

➔ Allow direct CR0.TS access.

➔ Task switching between processes that use FPU in guest
require no exit.

Direct guest access to CR0.TS

➔ fbench modified to context switch.

➔ 4 simultaneous processes on 1 vcpu guest.

➔ 200k vs 100k exits per second.

Direct CR0.TS numbers

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to
registers, sets task->status TS_USEDFPU bit

TS_USEDFPU

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to
registers, sets task->status TS_USEDFPU bit
3) scheduler begins switch from thread A to thread B

TS_USEDFPU

thread A

Linux lazy FPU

thread B

1) thread A issues FPU instruction
2) #NM exception triggers, handler loads task FPU state from memory to
registers, sets task->status TS_USEDFPU bit
3) scheduler begins switch from thread A to thread B
4) unlazy_fpu(thread A) sees TS_USEDFPU bit, saves FPU registers to
thread A state.

TS_USEDFPU

unlazy_fpu(thread A)

➔ Unconditional saving of hosts FPU state on guest FPU
load (and restore on heavy exit / preemption).

➔ Switch to unlazy_fpu.

➔ Host FPU saved/restored on demand, only when qemu
thread has made use of FPU.

Linux lazy FPU for qemu -> guest switch

➔ In-kernel device search

➔ Instruction emulation

➔ What else can be shared??

Optimization TODO's

Questions / comments ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

