
Improving the performance of the qcow2 format

KVM Forum 2017

Alberto Garcia <berto@igalia.com>

Improving the performance of the qcow2 format

Introduction to the qcow2 format

Improving the performance of the qcow2 format KVM Forum 2017

The qcow2 file format

qcow2: native file format for storing disk images in QEMU.
Multiple features:

Grows on demand.
Supports backing files.
Internal snapshots.
Compression.
Encryption.

Can achieve good performance (comparable to raw files),
but it depends on the scenario.
Making it faster may require:

A correct configuration.
Changes in the QEMU driver.
Changes in the format itself.

Improving the performance of the qcow2 format KVM Forum 2017

Structure of a qcow2 file

A qcow2 file is divided into clusters of equal size
(min: 512 bytes - default: 64 KB - max: 2 MB)

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Data cluster

Data cluster

Improving the performance of the qcow2 format KVM Forum 2017

Structure of a qcow2 file

The virtual disk as seen by the VM is divided
into guest clusters of the same size

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Data cluster

Data cluster

GUEST HOST

Improving the performance of the qcow2 format KVM Forum 2017

L1 and L2 tables

The L1 and L2 tables map guest addresses as seen by the VM
into host addresses in the qcow2 file

L1 Table L2 Tables Data clusters

Improving the performance of the qcow2 format KVM Forum 2017

Backing files

If QEMU tries to read data from a cluster that hasn’t been
allocated, it goes to the backing file in order to get the data.
Backing files don’t need to have the same format or cluster
size as the active image.
They can be chained: a backing file can have its own
backing file.

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

The problems of L1 and L2 tables

Improving the performance of the qcow2 format KVM Forum 2017

Cluster mapping: L1 and L2 tables

The L1 and L2 tables map guest clusters to host clusters.
There’s only one L1 table per image (per snapshot,
actually), but it’s small so it can be kept in RAM.
Several L2 tables, allocated on demand as the image grows.
Each time we need to access a data cluster (read or write)
we need to go to its L2 table.
This is one additional I/O operation per request: severe
impact in performance.
Solution: keep the L2 tables in RAM too.

Improving the performance of the qcow2 format KVM Forum 2017

The qcow2 L2 cache

QEMU keeps a cache of L2 tables to speed up disk access.
The maximum amount of L2 metadata depends on the
disk size and the cluster size.
Problem: large images need large amounts of metadata, so
we cannot keep everything in memory.

Cluster size (=L2 table size) Max. L2 size per TB
64 KB 128 MB (2048 tables)
128 KB 64 MB (512 tables)
256 KB 32 MB (128 tables)
512 KB 16 MB (32 tables)
1 MB 8 MB (8 tables)
2 MB 4 MB (2 tables)

Improving the performance of the qcow2 format KVM Forum 2017

Using the qcow2 L2 cache

The cache keeps full L2 tables in memory.
Default cache size: 1MB.
It can be changed with the l2-cache-size option:
-drive file=img.qcow2,l2-cache-size=8M

With the default cluster size (64 KB) it’s enough for a 8 GB
disk image.
Setting the right cache size has a dramatic effect on
performance.
Example: random 4K read requests on a fully populated
20GB image (SSD backend).

L2 cache size Average IOPS
1 MB 5100
1.5 MB 7300
2 MB 12700
2.5 Mb 63600

Improving the performance of the qcow2 format KVM Forum 2017

How much cache do we need?

The amount of L2 metadata for a certain disk image is

disk_size×8
cluster_size

Problem: this formula is too complicated. Why would the
user need to know about it?
QEMU should probably have a good default... but what’s a
good default?
Alternative: instead of saying how much memory we
want, we can say how much disk we want to cover.

This has already been discussed, see RedHat bug #1377735.

Improving the performance of the qcow2 format KVM Forum 2017

How much cache do we need?: cluster sizes

Increasing the cluster size is an easy way to reduce the
metadata size.

l2_size = disk_size×8
cluster_size

Pros:
Same performance with a smaller cache.
Reduces fragmentation.

Cons:
Slower allocations.
Wastes more disk space.

Improving the performance of the qcow2 format KVM Forum 2017

How much cache do we need?: backing files

Problem: each qcow2 image has
its own cache. Backing images
also need theirs!
Things get worse: cached tables
in backing files might end up
being unnecessary.

activebacking

Improving the performance of the qcow2 format KVM Forum 2017

How much cache do we need?: backing files

Problem: each qcow2 image has
its own cache. Backing images
also need theirs!
Things get worse: cached tables
in backing files might end up
being unnecessary.

activebacking

Improving the performance of the qcow2 format KVM Forum 2017

How much cache do we need?: backing files

Solution: we can clean unused
cache entries using the
cache-clean-interval
setting:
-drive file=hd.qcow2,cache-clean-interval=60

activebacking

Improving the performance of the qcow2 format KVM Forum 2017

Large cluster sizes means large L2 tables

An L2 table is always one cluster in size, and each cache
entry can only store one full L2 table. This means:

More I/O if we only need few entries in an L2 table.
Inflexible and inefficient use of the cache memory.

512K Clusters

1 MB

1 MB

1 MB

1 MB

0

512 GB

L2 TablesDisk

Improving the performance of the qcow2 format KVM Forum 2017

Large cluster sizes means large L2 tables

An L2 table is always one cluster in size, and each cache
entry can only store one full L2 table. This means:

More I/O if we only need few entries in an L2 table.
Inflexible and inefficient use of the cache memory.

128K Clusters

1 MB

128K Clusters

128K Clusters

128K Clusters

1 MB

1 MB

1 MB

0

128 GB

256 GB

384 GB

512 GB

L2 TablesDisk

Improving the performance of the qcow2 format KVM Forum 2017

Large cluster sizes means large L2 tables

An L2 table is always one cluster in size, and each cache
entry can only store one full L2 table. This means:

More I/O if we only need few entries in an L2 table.
Inflexible and inefficient use of the cache memory.

0

128 GB

256 GB

384 GB

512 GB

L2 TablesDisk

Improving the performance of the qcow2 format KVM Forum 2017

Large cluster sizes means large L2 tables

An L2 table is always one cluster in size, and each cache
entry can only store one full L2 table. This means:

More I/O if we only need few entries in an L2 table.
Inflexible and inefficient use of the cache memory.

0

128 GB

256 GB

384 GB

512 GB

L2 TablesDisk

Improving the performance of the qcow2 format KVM Forum 2017

Solution: reduce the cache granularity

Instead of reading complete L2 tables, make the cache read
smaller portions: L2 slices.
Less disk I/O.
The size of the slice can be adjusted to match that of the
host filesystem.
The qcow2 on-disk format does not need to change.
The qcow2 driver in QEMU needs relatively few changes.
Patches available in the mailing list!
Example: random 4K reads (SSD backend).

Disk size Cluster size L2 cache QEMU master 4K slices
16 GB 64 KB 1 MB [8 GB] 5000 IOPS 12700 IOPS
2 TB 2 MB 4 MB [1 TB] 576 IOPS 11000 IOPS

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

The problems of cluster allocation

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Cluster allocation and copy-on-write

Active

Backing

Allocating a cluster means filling it completely with data.
If the guest write request is small, the rest must be filled
with old data (e.g from a backing image).
QEMU used up to five operations for this: 2 reads, 3 writes.
It can be done optimally with just two: 1 read, 1 write.
New algorithm already available in QEMU 2.10.
Average increase of IOPS: 60 % (HDD), 15 % (SSD).

Improving the performance of the qcow2 format KVM Forum 2017

Subcluster allocation

L2 Table Data clusters

Divide each data cluster into subclusters and allocate each
one individually.
Reduces allocation overhead while keeping some benefits
of large clusters.

Improving the performance of the qcow2 format KVM Forum 2017

Subcluster allocation: benefits, problems and status

Last proposed in April 2017, prototype shows 2 to 4 times
more IOPS during allocations.
If subcluster size equals request size, no copy-on-write
needed: 10 times faster.
Other benefits: it would allow preallocation of images with
backing files.
Problems:

Incompatible changes to the on-disk format.
Increases the complexity of the qcow2 driver.
Increases data fragmentation in the image.

Improving the performance of the qcow2 format KVM Forum 2017

Space preallocation

When writing to a newly-allocated cluster we must fill it
with old data when necessary (copy-on-write).
If there was no old data, the request is padded with zeroes.
Instead of writing those zeroes, we can use fallocate() to
preallocate and empty the cluster first.
Requires support from the OS and the filesystems (ext4,
xfs, ...).
Patches in the mailing list (by Anton Nefedov).

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

Other considerations

Improving the performance of the qcow2 format KVM Forum 2017

qcow2 overlap checks

Sanity checks before writing to a qcow2
image.
They verify that a given offset doesn’t overlap
with existing metadata sections.
Available since QEMU 1.7.
Problem: some of these checks are relatively
expensive.

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Snapshot table

Data cluster

Improving the performance of the qcow2 format KVM Forum 2017

qcow2 overlap checks

Constant time Cached data Needs disk access
main-header active-l2 inactive-l2
active-l1 refcount-block
refcount-table inactive-l1
snapshot-table

inactive-l2 is disabled by default (it needs to
read all snapshots’ L1 tables).
refcount-block is particularly expensive even
with small images. Optimized in QEMU v2.9.
Checks can be configured with
overlap-check.<check-name>=[on|off]

overlap-check=[constant|cached|all|none]

QCOW2 Header

Refcount table

Refcount block

L1 table

L2 table

Data cluster

L2 table

Data cluster

Data cluster

Snapshot table

Data cluster

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

Status summary

Improving the performance of the qcow2 format KVM Forum 2017

Status summary

qcow2 L2 cache:
Size and cleanup timer are configurable.
Probably needs better defaults or configuration options.

L2 slices:
Patches in the mailing list.

COW with two I/O operations instead of five:
Available in QEMU 2.10.

COW with preallocation instead of writing zeroes:
Patches in the mailing list.

Subcluster allocation:
RFC status. Requires changes to the on-disk format.

Metadata overlap checks:
Slowest check optimized in QEMU 2.9.
Other checks can be disabled manually if needed.

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

Acknowledgments

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

Questions?

Improving the performance of the qcow2 format KVM Forum 2017

Improving the performance of the qcow2 format

Thank you!

Improving the performance of the qcow2 format KVM Forum 2017

