

TOWARD QCOW2 DEDUPLICATION

Benoît Canet <benoit.canet@nodalink.com>

benoit on #qemu / oftc

KVM-Forum / October 2013

mailto:benoit.canet@nodalink.com

What is deduplication?

● Factorizes redundant storage blocks
● Saves disk space
● Can be combined with block compression
● Saves money
● Reads identical blocks only once (cached)
● Encourages SSD use as SSD price/MB approaches

hard drive price/MB

Possible uses

● File server
● Catia CAD software: 5 fold decrease in disk use
● Factorize guest containers without AUFS
● Archival (when combined with compression)

Why QCOW2?

● QEMU code is simpler than kernel code
● QCOW2 has the required infrastructure
● QCOW2 is transparent for the guest
● Could work later over NFS/Gluster/Ceph

How does it work?

● Volume is divided into data blocks

● Use QCOW2 logical to physical mapping

● Identical logical blocks pointing to same physical block

● Use QCOW2 reference count for physical block lifecycle

How does it look?

Without dedupe With dedupe

Logical Physical PhysicalLogical

First iteration architecture

● Use hashes to identify identical blocks
● 256-bit crypto hashes
● Low probability of collision on 1 EB with 4KB clusters: 2.57E-49
● Non-ECC ram bit flip rate: 1.3e-12 upsets/bit/hour
● Manipulate all hashes in an in RAM Gtree
● Save hashes on disk indexed by physical block offset
● Write at 100MB/s on an intel 510 SSD
● QCOW2 read path untouched → Read at full speed

Deduplication algorithm

Incoming write IO vector

N = new block

D= duplicated block

D D DNNN N

Write sub IO vector Write sub IODedup Dedup Dedup

N NN N

The code walks through the write IO vector

First iteration shortcomings

● Writes are not at full SSD speed
● Makes random writes
● Crypto hash uses a lot of CPU
● 80 bytes of RAM per 4KB cluster → too much

Second iteration goals

● Building a key-value store into QCOW2
● Need to reduce memory usage
● Need to make memory usage configurable

SSD storage specificity

● Large sequential writes (Speed)
● No random writes (NAND wear-out)
● Can do fast random reads
● Random reads must be done in parallel to go fast
● Limited number of rewrite cycles (3,000)

Hash storage alternatives

● Disk hash table
● B-tree variants
● SILT
● BufferHash
● QCOW2 key value store

Disk hash table

● A collection of buckets containing hashes

0 N

Disk hash table

● Pro: O(1) lookup, O(1) insertion
● Con: Generates lots of random writes
● Con: Sparse hash table is inefficient
● Con: Disk Hash tables don't grow well
● Con: Write amplification

B-tree

Root

Node Node Node

Leafs 2 4 7 11 32 44 46 66 77

2 4 11 32 46 66

7 44

B-tree

● Pro: Well known structure (BAYER -1972)
● Con: O(log(n)) lookup not O(1)
● Con: Complex locking protocols
● Con: Generates lots of random writes
● Con: Write amplification

SILT

● SILT is a memory-efficient, high-performance key-value store

● Pro: Made for deduplication needs
● Pro: Made for SSD
● Pro: O(1) lookup
● Pro: Amortized insertions
● Con: complexity → need to simplify

BufferHash

● Another research paper
● Ancestor of SILT
● Pro: Also done for SSD
● Pro: Lots of good ideas
● Combine these two great projects
● Specialize deduplication for SSD usage

QCOW hash store

● Optimized for SSD
● Two simple stages
● Takes only around 4 bytes of RAM per 4KB cluster
● No write amplification
● Amortized writes
● O(1) lookup
● Memory usage can be configurable

Inserting into the hash store

● Insertions use only large sequential writes
● No write amplification

Stage 1

● Write new hashes into a log
● Build a hash table of the new hashes in RAM

Stage 1

Write on disk log: hash table rebuild from it on restart

Index into in RAM hash table

Stage 2

● Convert Stage 1 hash table into an incarnation
● Collect incarnations

Stage 2

Stage 1 ram hash table Disk incarnation #1

Disk incarnation #2

Disk incarnation #n

dump

...

Querying

● First query Stage 1
● Next query every Stage 2 incarnation
● Query from newest to oldest
● Queries can be done in O(1) with RAM filters

How to speed up Stage 2 queries

● One filter per incarnation
● Filters loaded into RAM
● A filter is an extract of an incarnation
● Same as the incarnation, only smaller
● Use smaller hashes at the same position
● Smaller hashes are slices of the hashes

A Stage 2 query probe

On disk hash incarnation #n

Probe in RAM incarnation filter (extracts of the hashes)

Store queries

Filter 1 Filter 2 Filter 3 Filter nHash table

--------------------------------->

1 2 3 n

Incarnations

Memory usage control

● Oldest in RAM filters can be unloaded at will
● Memory usage will decrease
● Only the deduplication ratio will be impacted

Current status

● QCOW2 key-value store implemented
● First round of patches need to be merged

Third iteration (after merge)

● SSDs need parallelization to read fast
● Current algorithm is sequential so it is slow
● Dedupe algorithm code will need a rewrite
● Need a faster 256-bit hash function (cityhash?)

Does it work at all?

Let's do a simple test

Host preparation

● On the host:

● # qemu-img create -f qcow2_dedup test.qcow2 10G

● # qemu … -drive file=test.qcow2,if=virtio,cache=none

On the guest

● root@debian:~# mkfs.ext4 /dev/vdb
● mount /dev/vdb /mnt
● root@debian:~# du -sh /usr/

927M /usr/
● root@debian:~# cp /usr/ /mnt/1 -a
● root@debian:~# cp /usr/ /mnt/2 -a
● root@debian:~# cp /usr/ /mnt/3 -a
● root@debian:~# cp /usr/ /mnt/4 -a
● root@debian:~# du -sh /mnt/

3.6G /mnt/
● root@debian:~# sync

Back to the host

● # du -sh test.qcow2

1.1GB test.qcow2

● 2.5GB of disk space saved on 3.6GB

Sponsor:

Contact: benoit.canet@nodalink.com

Questions?

mailto:benoit.canet@nodalink.com

References

● SSD: http://en.wikipedia.org/wiki/Solid-state_drive

● B-tree: www.cs.aau.dk/~simas/aalg06/UbiquitBtree.pdf

● SILT: http://www.cs.cmu.edu/~dga/papers/silt-sosp2011.pdf

● BufferHash: http://pages.cs.wisc.edu/~akella/papers/bufferhash-nsdi10.pdf

● Venti: http://www.cs.bell-labs.com/sys/doc/venti/venti.html

http://en.wikipedia.org/wiki/Solid-state_drive
http://www.cs.aau.dk/~simas/aalg06/UbiquitBtree.pdf
http://www.cs.cmu.edu/~dga/papers/silt-sosp2011.pdf
http://pages.cs.wisc.edu/~akella/papers/bufferhash-nsdi10.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

