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What is deduplication?

● Factorizes redundant storage blocks
● Saves disk space
● Can be combined with block compression
● Saves money
● Reads identical blocks only once (cached)
● Encourages SSD use as SSD price/MB approaches 

hard drive price/MB



  

Possible uses

● File server
● Catia CAD software: 5 fold decrease in disk use
● Factorize guest containers without AUFS
● Archival (when combined with compression)



  

Why QCOW2?

● QEMU code is simpler than kernel code
● QCOW2 has the required infrastructure
● QCOW2 is transparent for the guest
● Could work later over NFS/Gluster/Ceph



  

How does it work?

● Volume is divided into data blocks

● Use QCOW2 logical to physical mapping

● Identical logical blocks pointing to same physical block

● Use QCOW2 reference count for physical block lifecycle



  

How does it look?

Without dedupe                   With dedupe

Logical Physical PhysicalLogical



  

First iteration architecture

● Use hashes to identify identical blocks
● 256-bit crypto hashes
● Low probability of collision on 1 EB with 4KB clusters: 2.57E-49
● Non-ECC ram bit flip rate: 1.3e-12 upsets/bit/hour
● Manipulate all hashes in an in RAM Gtree
● Save hashes on disk indexed by physical block offset
● Write at 100MB/s on an intel 510 SSD
● QCOW2 read path untouched → Read at full speed



  

Deduplication algorithm

Incoming write IO vector

N = new block

D= duplicated block

D D DNNN N

Write sub IO vector Write sub IODedup Dedup Dedup

N NN N

The code walks through the write IO vector



  

First iteration shortcomings

● Writes are not at full SSD speed
● Makes random writes
● Crypto hash uses a lot of CPU
● 80 bytes of RAM per 4KB cluster → too much



  

Second iteration goals

● Building a key-value store into QCOW2
● Need to reduce memory usage
● Need to make memory usage configurable



  

SSD storage specificity

● Large sequential writes (Speed)
● No random writes (NAND wear-out)
● Can do fast random reads
● Random reads must be done in parallel to go fast
● Limited number of rewrite cycles (3,000)



  

Hash storage alternatives

● Disk hash table
● B-tree variants
● SILT
● BufferHash
● QCOW2 key value store



  

Disk hash table

● A collection of buckets containing hashes

0 N



  

Disk hash table

● Pro: O(1) lookup, O(1) insertion
● Con: Generates lots of random writes
● Con: Sparse hash table is inefficient
● Con: Disk Hash tables don't grow well
● Con: Write amplification



  

B-tree

Root

Node Node Node

Leafs 2 4 7 11 32 44 46 66 77

2 4 11 32 46 66

7 44



  

B-tree

● Pro: Well known structure (BAYER -1972)
● Con: O(log(n)) lookup not O(1)
● Con: Complex locking protocols
● Con: Generates lots of random writes
● Con: Write amplification



  

SILT

● SILT is a memory-efficient, high-performance key-value store

● Pro: Made for deduplication needs
● Pro: Made for SSD
● Pro: O(1) lookup
● Pro: Amortized insertions
● Con: complexity → need to simplify



  

BufferHash

● Another research paper
● Ancestor of SILT
● Pro: Also done for SSD
● Pro: Lots of good ideas
● Combine these two great projects
● Specialize deduplication for SSD usage



  

QCOW hash store

● Optimized for SSD
● Two simple stages
● Takes only around 4 bytes of RAM per 4KB cluster
● No write amplification
● Amortized writes
● O(1) lookup
● Memory usage can be configurable



  

Inserting into the hash store

● Insertions use only large sequential writes
● No write amplification



  

Stage 1

● Write new hashes into a log
● Build a hash table of the new hashes in RAM



  

Stage 1

Write on disk log: hash table rebuild from it on restart

Index into in RAM hash table



  

Stage 2

● Convert Stage 1 hash table into an incarnation
● Collect incarnations



  

Stage 2

Stage 1 ram hash table Disk incarnation #1

Disk incarnation #2

Disk incarnation #n

dump

...



  

Querying

● First query Stage 1
● Next query every Stage 2 incarnation
● Query from newest to oldest
● Queries can be done in O(1) with RAM filters



  

How to speed up Stage 2 queries

● One filter per incarnation
● Filters loaded into RAM
● A filter is an extract of an incarnation
● Same as the incarnation, only smaller
● Use smaller hashes at the same position
● Smaller hashes are slices of the hashes



  

A Stage 2 query probe

On disk hash incarnation #n

Probe in RAM incarnation filter (extracts of the hashes)



  

Store queries

Filter 1 Filter 2 Filter 3 Filter nHash table

--------------------------------->

1 2 3 n

Incarnations



  

Memory usage control

● Oldest in RAM filters can be unloaded at will
● Memory usage will decrease
● Only the deduplication ratio will be impacted



  

Current status

● QCOW2 key-value store implemented
● First round of patches need to be merged



  

Third iteration (after merge)

● SSDs need parallelization to read fast
● Current algorithm is sequential so it is slow
● Dedupe algorithm code will need a rewrite
● Need a faster 256-bit hash function (cityhash?) 



  

Does it work at all?

Let's do a simple test



  

Host preparation

● On the host:

● # qemu-img  create -f qcow2_dedup test.qcow2 10G

● # qemu … -drive file=test.qcow2,if=virtio,cache=none



  

On the guest

● root@debian:~# mkfs.ext4 /dev/vdb
● mount /dev/vdb /mnt
● root@debian:~# du -sh /usr/

927M    /usr/
● root@debian:~# cp /usr/ /mnt/1 -a
● root@debian:~# cp /usr/ /mnt/2 -a
● root@debian:~# cp /usr/ /mnt/3 -a
● root@debian:~# cp /usr/ /mnt/4 -a
● root@debian:~# du -sh /mnt/

3.6G    /mnt/
● root@debian:~# sync



  

Back to the host

● # du -sh  test.qcow2

1.1GB    test.qcow2

● 2.5GB of disk space saved on 3.6GB



  

Sponsor:

Contact: benoit.canet@nodalink.com

Questions?

mailto:benoit.canet@nodalink.com
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