
More Block Device Configuration

Max Reitz <mreitz@redhat.com>

Kevin Wolf <kwolf@redhat.com>
KVM Forum 2014

Part I

What we have

BlockDriverState

BDS

BDS types

Protocol Format

Simple BDS tree

Guest device

Format BDS

Protocol BDS

IDE

qcow2

file

Terminology

Frontend
(guest device)

Backend (BDS
tree)

IDE

qcow2 Root

fileqcow2

http

backing

What is possible today

IDE

raw

quorum

qcow2

blkdebug

file

qcow2

http

raw

nbd

qcow2

qcow2

nfs

file

child[0]

child[1]

child[2]

file

file

backing

file

file file

file

How to configure this?

Legacy syntax:

-hda nbd:localhost:10809

Separate backend and frontend;
Option syntax for backend:

-drive if=none,\

id=disk0,driver=raw,\

file.driver=nbd,\

file.host=localhost

-device ide-hd,drive=disk0

IDE

raw

nbd

file

blockdev-add

-drive if=none,id=disk0,driver=raw,\

file.driver=nbd,file.host=localhost

{ "execute": "blockdev-add",

"arguments": {

"options": {

"id": "disk0",

"driver": "raw",

"file": {

"driver": "nbd",

"host": "localhost"

} } } }

disk0

raw

nbd

file

What is possible today (again)

"options": {

"id": "disk0",

"driver": "raw",

"file": {

"driver": "quorum",

"vote-threshold": 2,

"children": [{

"driver": "qcow2",

"backing": "back0",

"file": "file0",

}, "qc1", "qc2"] } }

disk0

raw

quorum

qcow2

file0back0

qc1 qc2

file

ch
ild

[0
]

b
ac

ki
n

g

fi
le

child[1]

child[2]

node-name vs. id

BDS directly connected to guest devices
(legacy!)

BDS id used to connect both

blockdev-add: id ⇐⇒ top-level BDS

→ id ≈ guest-accessible BDS

Naming and accessing non-top-level BDS?
→ node-name

Common namespace for id and node-name

Options in filenames, revisited

json:{"driver": "qcow2",

"cache-size": 0,

"file": {

"driver": "file",

"filename": "file.qcow2"

} }

Why?

Some options cannot be given in filenames
(e.g. qcow2 metadata cache size)

Sometimes you can only give filenames
(e.g. backing file field in COW files)

Part II

Some unsolved problems

Section 1

Make everything use blockdev-add

Make everything use blockdev-add

Opening block devices (blockdev-add)

If you use blockdev-add...

All required options are specified
Optional options get defaults

We’ll get to the problems there later

Building the graph is straightforward

Make everything use blockdev-add

Opening block devices (-drive)

If you use -drive, we’d like to translate that into a
clean blockdev-add, but...

Not even the block driver (image format) is
required

More involved magic to fill in defaults

New nodes may be automatically created

No specification of this magic exists

We need to stay compatible with old versions

Make everything use blockdev-add

Inherited options (I)

disk [qcow2]

Determining cache mode for a single node:

1 Explicitly specified
e.g. -drive cache.direct=on

2 Default is cache=writeback

Make everything use blockdev-add

Inherited options (II)

disk [qcow2]

disk.file [file]

file

Determining cache mode for the protocol level:

1 Explicitly specified

2 Inherit from parent node (disk)

3 Default is cache=writeback

Make everything use blockdev-add

Inherited options (III)

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

file

backing

file

Determining cache mode for the backing file:

1 Explicitly specified

2 Backing file path: json:{cache:...}
3 Inherit from parent node (disk)

4 Default is cache=writeback

Make everything use blockdev-add

It goes both ways

disk [qcow2]

disk.file [file]

file
existence

drive
cache

driver

Format probing: Must open protocol layer first

Options for protocol depend on format layer

Protocol only added by default if format driver
requires a protocol

Make everything use blockdev-add

It goes both ways

Format probing: Must open protocol layer first

Options for protocol depend on format layer

Protocol only added by default if format driver
requires a protocol

So we can’t easily translate everything into plain
blockdev-add options in a wrapper. /

Section 2

Reopening

Reopening

Reopen: The traditional case

bdrv reopen(cache=none)

disk [writeback]

disk.file [writeback]

backing [writeback]

backing.file [writeback]

file

backing

file

Cache mode of backing file wasn’t explicitly
configurable:

All nodes inherited from the root

Reopen affects all nodes

Reopening

Reopen: blockdev-add world (I)

bdrv reopen(cache=writethrough)

disk [writeback]

disk.file [writeback]

backing [none]

backing.file [none]

file

backing

file

What happens if the backing file has...

...inherited the cache mode

...an explicitly set cache mode

...got its cache mode from a json: filename

Reopening

No inheritance with references

disk [qcow2]

disk.file [file]

backing [qcow2]

backing.file [nbd]

file

backing

file

Cache mode for a separately created backing file:

1 Explicitly specified

2 Default is cache=writeback

Don’t change options when a node is referenced

Reopening

Reopen: blockdev-add world (II)

bdrv reopen(cache=writethrough)

disk [writeback]

disk.file [writeback]

backing [none]

backing.file [none]

file

backing

file

What happens if the backing file was created
separately and has...

...an explicitly set cache mode

...the default cache mode

Section 3

Dynamic Reconfiguration

Dynamic Reconfiguration

Adding and removing nodes

virtio-blk

qcow2

file

file

virtio-blk

throttle

qcow2

file

file

file

Let’s add a new node at runtime:

Take a live snapshot

Add an I/O throttling filter

...

Dynamic Reconfiguration

...but where?

virtio-blk NBD server

throttle

qcow2

file

file

virtio-blk NBD server

throttle

qcow2

file

file

virtio-blk NBD server

throttle

qcow2

file

file

Need to specify where to insert the node

Set of arrows to replace

Works only for nodes with one child

A general solution looks complex – necessary?

Dynamic Reconfiguration

Addressing nodes and edges

Nodes can be addressed by their node-name

Edges can be addresed by node + role

role: file, backing, child[3], ...

Complication: Automatically created nodes

e.g. for block jobs or throttling QMP commands

Makes non-explict changes to the graph

Dynamic Reconfiguration

Block jobs and reconfiguration

Long-running background jobs may be affected by
changes to the graph

Disable conflicting reconfiguration commands

Don’t restrict functionality too much

Jeff Cody will talk about this

Questions?

	What we have
	Some unsolved problems
	Make everything use blockdev-add
	Reopening
	Dynamic Reconfiguration

