Crossing the endianness bridge
(or a foolish attempt at mixed-endian virtualization)

Marc Zyngier
<marc.zyngier@arm.com>

KVM Forum '13

The Architecture for the Digital Worl



Foreword
This is a (hopefully short) talk about mixed-endianness
virtualization support on arm64. It is NOT about:
» Finding out whether Little Endian is better or worse than Big
Endian
— We all know what the answer is, don't we?
» The big.LITTLE architecture
— One issue at a time, please...
» Claming we have nailed the problem for good
— If only...

The Architecture for the Digital VWorld® ARM


http://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-ref-big-little-endian-herrenschmidt.odp

Foreword

This is a (hopefully short) talk about mixed-endianness
virtualization support on arm64. It is NOT about:

» Finding out whether Little Endian is better or worse than Big
Endian
— We all know what the answer is, don't we?
» The big.LITTLE architecture
— One issue at a time, please...
» Claming we have nailed the problem for good
— If only...

It is more about:

» Telling the story of why and how we got there
» Starting a discussion on how we can better support that kind
of configuration

The Architecture for the Digital VWorld® ARM


http://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-ref-big-little-endian-herrenschmidt.odp

Foreword
This is a (hopefully short) talk about mixed-endianness
virtualization support on arm64. It is NOT about:

» Finding out whether Little Endian is better or worse than Big
Endian
— We all know what the answer is, don't we?
» The big.LITTLE architecture
— One issue at a time, please...
» Claming we have nailed the problem for good
— If only...

It is more about:

» Telling the story of why and how we got there
» Starting a discussion on how we can better support that kind
of configuration

Mandatory read:
Big and Little Endian Inside Out — Ben Herrenschmidt, LPC12

m‘_ ‘ The Architecture for the Digital VWorld® ARM


http://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-ref-big-little-endian-herrenschmidt.odp

ARM: to BE or not to BE?

So what about ARM and endianness?

Endianness agnostic architecture

Mostly used as LE with Linux

Recent surge in BE interest

Linux/ARM BE port revived by Ben Dooks

vV vyYyywy

The Architecture for the Digital VWorld® ARM



ARM: to BE or not to BE?

So what about ARM and endianness?

Endianness agnostic architecture

Mostly used as LE with Linux

Recent surge in BE interest

Linux/ARM BE port revived by Ben Dooks

vV vyYyywy

Meanwhile, in Cambridge:

WD Too bad we can't really test this BE code...
MZ Wonder if we could stick something in KVM...
WD ...

MZ Profit!

‘ ‘ The Architecture for the Digital World®



ARM: to BE or not to BE? (take #2)

Why this sudden surge in BE interest?
Isn’'t BE a dead horse anyway?
Well, maybe. But there's always a “But":

» Networking folks are now coming to ARM

> They are very interested in AArch64
» They have a lot of existing code that is:

The Architecture for the Digital VWorld® ARM



ARM: to BE or not to BE? (take #2)

Why this sudden surge in BE interest?
Isn’'t BE a dead horse anyway?
Well, maybe. But there's always a “But":

» Networking folks are now coming to ARM

> They are very interested in AArch64
» They have a lot of existing code that is:

>

vV vy vy VvV VY

Old

Crufty
Unmaintained
Closed source
Certified

Not 64bit safe
Big-Endian only

The Architecture for the Digital World®



ARM: to BE or not to BE? (take #2)

Why this sudden surge in BE interest?
Isn’'t BE a dead horse anyway?
Well, maybe. But there's always a “But":

» Networking folks are now coming to ARM
> They are very interested in AArch64
» They have a lot of existing code that is:
» Old
Crufty
Unmaintained
Closed source
Certified
Not 64bit safe
Big-Endian only

Did | say old and unmaintained?

vV vy vy VvV VY

v

The Architecture for the Digital VWorld® ARM



ARM: to BE or not to BE? (take #2)

Why this sudden surge in BE interest?
Isn’'t BE a dead horse anyway?
Well, maybe. But there's always a “But":

» Networking folks are now coming to ARM
> They are very interested in AArch64
» They have a lot of existing code that is:

>

vV vy vy VvV VY

v

Old

Crufty
Unmaintained
Closed source
Certified

Not 64bit safe
Big-Endian only

Did | say old and unmaintained?

» They either don't want to or simply cannot touch this code

The Architecture for the Digital VWorld® ARM



BE: Do the right thing!

Rewriting the BE code to be endianness agnostic.

» Solves the problem completely
» The perfect solution
» Why the hell are we here?

The Architecture for the Digital VWorld® ARM



BE: Do the right thing!

Rewriting the BE code to be endianness agnostic.

» Solves the problem completely
» The perfect solution
» Why the hell are we here?

Not an option.

» It would take years to achieve
» Goes against all the reasons we have mentioned before

The Architecture for the Digital VWorld® ARM



BE: Do the right thing!

Rewriting the BE code to be endianness agnostic.

» Solves the problem completely
» The perfect solution
» Why the hell are we here?

Not an option.

» It would take years to achieve
» Goes against all the reasons we have mentioned before

It's not fun at all anyway

The Architecture for the Digital VWorld® ARM



BE: Compiler magic to have endian-specific acccessors

struct bar {
unsigned int foo;

};
void blah(struct bar *barp)
{
barp->foo = Oxbebafe;
}
blah: mov wl, #0xbafe
movk wl, #0xbe, 1sl #16
str wl, [x0]
ret

‘__ ‘ The Architecture for the Digital World®



BE: Compiler magic to have endian-specific acccessors

struct bar {
unsigned int foo;
} __struct_layout_be;

void blah(struct bar *barp)

{
barp->foo = Oxbebafe;
}
blah: mov wl, #0xbafe
movk wl, #0xbe, 1sl #16
rev wl, wi
str wl, [x0]
ret

The Architecture for the Digital World®



BE: Compiler magic to have endian-specific acccessors

struct bar {
unsigned int foo;
} __struct_layout_be;

void blah(struct bar *barp)

{
barp->foo = Oxbebafe;
}
blah: mov wl, #0xbafe
movk wl, #0xbe, 1lsl #16
rev wl, wi
str wl, [x0]
ret

Lovely idea, but requires the data structure to be annotated, which
defeats the whole idea of not touching the code.

The Architecture for the Digital VWorld® ARM



BE: hacking the kernel to run mixed-endian userspace

Allow the kernel to deal with both LE and BE userspaces at the
same time, by doing the neccessary marshalling at the syscall level
(a la compat-layer).
Seems like an ideal solution:

» No source code change

> No userspace change

» Focussed changes in the kernel (syscalls)

The Architecture for the Digital VWorld® ARM



BE: hacking the kernel to run mixed-endian userspace

Allow the kernel to deal with both LE and BE userspaces at the
same time, by doing the neccessary marshalling at the syscall level
(a la compat-layer).
Seems like an ideal solution:

» No source code change

> No userspace change

» Focussed changes in the kernel (syscalls)

» Too good to be true?

The Architecture for the Digital VWorld® ARM



BE: hacking the kernel to run mixed-endian userspace

Allow the kernel to deal with both LE and BE userspaces at the
same time, by doing the neccessary marshalling at the syscall level
(a la compat-layer).
Seems like an ideal solution:

» No source code change

> No userspace change

» Focussed changes in the kernel (syscalls)

» Too good to be true?

Unfortunately yes. It is perfect until you consider:

> Futexes
» Shared memory
» Most IPCs, actually

But we seem to get closer...

The Architecture for the Digital VWorld® ARM




BE: using virtualization for sandboxing

Let's move all our BE code (including the kernel) into a VM:
» Similar to the previous solution
» No source code change

> No userspace change

v

Strong isolation between BE and LE worlds

The Architecture for the Digital World®



BE: using virtualization for sandboxing

Let's move all our BE code (including the kernel) into a VM:
» Similar to the previous solution
» No source code change

> No userspace change

v

Strong isolation between BE and LE worlds

v

The perfect match?

The Architecture for the Digital World®



BE: using virtualization for sandboxing

Let's move all our BE code (including the kernel) into a VM:
» Similar to the previous solution
» No source code change
> No userspace change
» Strong isolation between BE and LE worlds

» The perfect match?

Let's investigate...

The Architecture for the Digital World®



ARM: The art of BEing

ARM BE support started off with something called BE-32:

» 32bit word invariant
— Words have the same ordering, no matter the endianness

Byte (and 16bit) addressing differs between BE and LE
Just a hack on the bus

v

v

Affects both data and intructions
Switching from one mode to another is a nightmare
— The best path to insanity

v

v

The Architecture for the Digital World®




ARM: The art of BEing

ARM BE support started off with something called BE-32:

» 32bit word invariant
— Words have the same ordering, no matter the endianness

» Byte (and 16bit) addressing differs between BE and LE
» Just a hack on the bus

» Affects both data and intructions
» Switching from one mode to another is a nightmare
— The best path to insanity

Thankfully, we can now forget about this.

The Architecture for the Digital VWorld® ARM




ARM: The art of BEing

Starting with ARMv6, BE support is implemented as BE-8:

» Byte invariant

— Bytes are located at the same address, no matter the
endianness

» 16bit, 32bit addressing differs between BE and LE

— Just like on any other sane architecture...

» Instructions and data have distinct endianness

> Instructions are always little endian
» Data endianness is configurable

This is what to want to support.

hitecture for the Digital World®




ARM: Exception levels and endianness

Non-Secure State Secure State

NS User Mode S User Mode

NS Hyp Mode

S Privileges
Modes

The Architecture for the Digital VWorld® ARM



ARM: Exception levels and endianness

Non-Secure State

NS User Mode

NS Hyp Mode

Secure State

S User Mode

S Privileges

Modes

» Each exception level has its own
endianness configuration

> A taken exception automatically
switches the core to the endianness
of the target exception level

» Endianness of the level causing the
exception will be restored on
exception return

itecture for the Digital World® AR



ARM: Exception levels and endianness

Non-Secure State

NS User Mode

NS Hyp Mode

Secure State

» Each exception level has its own
endianness configuration

S User Mode
------------ > A taken exception automatically
switches the core to the endianness
of the target exception level
» Endianness of the level causing the
exception will be restored on
N exception return
S Privileges
Modes

This looks like an easy fit for KVM:
> Let the guest deal with its own endianness
» Switch back to LE when trapping into the hypervisor.

hitecture for the Digital World®



ARM: Exception levels and endianness

Non-Secure State

NS User Mode

NS Hyp Mode

Secure State

» Each exception level has its own
endianness configuration

S User Mode
------------ > A taken exception automatically
switches the core to the endianness
of the target exception level
» Endianness of the level causing the
exception will be restored on
N exception return
S Privileges
Modes

This looks like an easy fit for KVM:

> Let the guest deal with its own endianness

» Switch back to LE when trapping into the hypervisor.
Job done! Well, almost...

hitecture for the Digital World® AR I



Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!

The Architecture for the Digital Worl



Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

The Architecture for the Digital VWorld® AR



Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE

The Architecture for the Digital World®



Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE
» Linux 1O accessors are constructed to byteswap on BE

hitecture for the Digital World®




Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE
» Linux 1O accessors are constructed to byteswap on BE

This looks like a no-brainer too:

hitecture for the Digital World®




Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!

» Peripherals that are close to the core are always LE
— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE
» Linux 1O accessors are constructed to byteswap on BE

This looks like a no-brainer too:
» VM-accessible devices should be already dealt with

hitecture for the Digital World®




Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE
» Linux 1O accessors are constructed to byteswap on BE
This looks like a no-brainer too:

» VM-accessible devices should be already dealt with
» Emulated devices should also be OK

The Architecture for the Digital VWorld® ARM



Beyond the core: Devices

There is, of course, more to mixed-endianness than just dealing
with the CPU. Let's talk about devices!
» Peripherals that are close to the core are always LE

— Interrupt controller
— Generic timers

» ARM recommends that all other peripherals are wired as LE
» Linux 1O accessors are constructed to byteswap on BE

This looks like a no-brainer too:

» VM-accessible devices should be already dealt with
» Emulated devices should also be OK
» Let's look a bit closer

hitecture for the Digital World®




Interlude: Second stage translation
How does a guest access memory on KVM/arm[64]?

» Always in control of its own page tables
» No trapping, no subtle repainting
» Generated address is an Intermediate Physical Address (IPA)

The Architecture for the Digital VWorld® ARM



Interlude: Second stage translation
How does a guest access memory on KVM/arm[64]?

» Always in control of its own page tables
» No trapping, no subtle repainting
» Generated address is an Intermediate Physical Address (IPA)

The hypervizor provides

» A second set of page tables (Stage-2 translation)
» Converts IPA to PA
— Allows mapping of what the guest sees as physical memory
with the real thing
Can override attributes like cacheability, shareability
— This is where some subtle repainting can occur...
Can use a different page size
Allows pages to be dynamically mapped by handling Stage-2
page faults

v

vy

l The Architecture for the Digital VWorld® ARM




Interlude: Second stage translation
How does a guest access memory on KVM/arm[64]?

» Always in control of its own page tables
» No trapping, no subtle repainting
» Generated address is an Intermediate Physical Address (IPA)

The hypervizor provides

» A second set of page tables (Stage-2 translation)
» Converts IPA to PA
— Allows mapping of what the guest sees as physical memory
with the real thing
Can override attributes like cacheability, shareability
— This is where some subtle repainting can occur...
Can use a different page size
Allows pages to be dynamically mapped by handling Stage-2
page faults

v

vy

MMIO devices do not have a Stage-2 translation, allowing access
to be trapped.

h‘ l The Architecture for the Digital VWorld® ARMU



The journey of a (wana)BE write

Let's have a look at what happens when a BE guest writes to an
emulated LE device:

» Guest loads the value to write in a register

» Guest byteswaps the value in the register
— The bus is LE, so the value has to be swapped

> Guest performs the write

» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over

The Architecture for the Digital VWorld® ARM



The journey of a (wana)BE write

Let's have a look at what happens when a BE guest writes to an
emulated LE device:
» Guest loads the value to write in a register

» Guest byteswaps the value in the register
— The bus is LE, so the value has to be swapped

» Guest performs the write
» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over
At that point, we have the following information:
» The Intermediate Physical Address the guest was writing to
> The register containing the value it was writing
> The size of the access

The Architecture for the Digital VWorld® ARM




The journey of a (wana)BE write

Let's have a look at what happens when a BE guest writes to an
emulated LE device:
» Guest loads the value to write in a register

» Guest byteswaps the value in the register
— The bus is LE, so the value has to be swapped

» Guest performs the write
» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over

At that point, we have the following information:

> The Intermediate Physical Address the guest was writing to

> The register containing the value it was writing

> The size of the access
But the register now contains a byteswapped value, that we'll have
to byteswap again before passing it to the device emulation.

T L e meogawore ARM



The journey of a (wana)BE read
BE guest reads from a LE device are quite similar:

» Guest performs a read from a device address
» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over

The Architecture for the Digital VWorld® ARM



The journey of a (wana)BE read

BE guest reads from a LE device are quite similar:
» Guest performs a read from a device address
» Stage-2 translation fault, as no mapping exists at this address

— KVM takes over

At that point, we have the following information:
» The Intermediate Physical Address the guest was reading from
» The register it expect the value in
» The size of the access

The Architecture for the Digital VWorld® ARM



The journey of a (wana)BE read
BE guest reads from a LE device are quite similar:

» Guest performs a read from a device address
» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over
At that point, we have the following information:
» The Intermediate Physical Address the guest was reading from
» The register it expect the value in
» The size of the access
Once the device has emulated the read access, we have to:
» Byteswap the value
— The guest thinks it reads from a LE bus...

» Shove it into the register the guest used for its access
> Resume the guest
— The guest will byteswap the value again...

The Architecture for the Digital World®




The journey of a (wana)BE read
BE guest reads from a LE device are quite similar:

» Guest performs a read from a device address
» Stage-2 translation fault, as no mapping exists at this address
— KVM takes over
At that point, we have the following information:
» The Intermediate Physical Address the guest was reading from
» The register it expect the value in
» The size of the access
Once the device has emulated the read access, we have to:
» Byteswap the value
— The guest thinks it reads from a LE bus...
> Shove it into the register the guest used for its access
> Resume the guest
— The guest will byteswap the value again...
Because device emulation completely bypasses the bus (and
registers have no endianness), we end up byteswapping data twice.

L l The Architecture for the Digital VWorld® ARMU




The aftermath

So what have we found so far:

» We can sanely switch the CPU endianness around VM
entry/exit

» We can trap an MMIO access, and do the necessary
byteswaps if the VM is BE

The Architecture for the Digital VWorld® ARM



The aftermath

So what have we found so far:

» We can sanely switch the CPU endianness around VM
entry/exit

» We can trap an MMIO access, and do the necessary
byteswaps if the VM is BE
» One interesting bit:
— LE guest on BE host is more efficient than BE on LE
— No need to byteswap on the host side
— Register representation is immune to endianness change

The Architecture for the Digital VWorld® ARM



The aftermath

So what have we found so far:

» We can sanely switch the CPU endianness around VM
entry/exit
» We can trap an MMIO access, and do the necessary
byteswaps if the VM is BE
» One interesting bit:
— LE guest on BE host is more efficient than BE on LE
— No need to byteswap on the host side
— Register representation is immune to endianness change

Are we there yet?

‘7 ‘ The Architecture for the Digital VWorld® ARM




The aftermath

So what have we found so far:

» We can sanely switch the CPU endianness around VM
entry/exit
» We can trap an MMIO access, and do the necessary
byteswaps if the VM is BE
» One interesting bit:
— LE guest on BE host is more efficient than BE on LE
— No need to byteswap on the host side
— Register representation is immune to endianness change

Are we there yet? Not qu ite.

The Architecture for the Digital VWorld® ARM



The case of virtio/MMIO

What is virtio?

» A framework for paravirtualized devices
> Uses shared memory between host and guest
» High performance, low overhead

What is virtio/MMIO?

The sick brainchild of Pawet Moll <pawel.moll@arm.com>
Allows a virtio device to be exposed to a PCl-less system
Exposes the configuration registers as an MMIO range
Extensively used on ARM systems (“PCI? WTF?")

The only way kvmtool can provide a useful device to a
KVM/arm[64] guest

So what is the problem with virtio/MMI0?

v

vV vyYyywy

m‘_ ‘ The Architecture for the Digital VWorld® ARM



The case of virtio/MMIO #2

The spec is quite unclear when it comes to endianness.
» Config space (recently) declared as LE only
» Endianness in the virtio-ring unspecified

— Assumed to be identical between host and guest

The challenge here is to introduce mixed-endian support without
breaking existing users.

The Architecture for the Digital VWorld®



virtio/MMIQ: Fixing the config space

As we said above, the virtio/MMIO configuration space is strictly
LE. However, the Linux driver code accessing it looks like this:

static void vm_get(struct virtio_device *vdev, unsigned offset,
void *buf, unsigned len)

{
struct virtio_mmio_device *vm_dev = to_virtio_mmio_device(vdev);
u8 *ptr = buf;
int i;
for (i = 0; i < len; i++)
ptrl[i] = readb(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
¥

itecture for the Digital W



virtio/MMIQ: Fixing the config space

As we said above, the virtio/MMIO configuration space is strictly
LE. However, the Linux driver code accessing it looks like this:

static void vm_get(struct virtio_device *vdev, unsigned offset,
void *buf, unsigned len)

{
struct virtio_mmio_device *vm_dev = to_virtio_mmio_device(vdev);
u8 *ptr = buf;
int i;
for (i = 0; i < len; i++)
ptrl[i] = readb(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
¥

While the above code works for LE guests on LE hosts, it is
unlikely to give any meaningful result on a BE guest (no matter
the endianness of the host)...

itecture for the Digital World® A



virtio/MMIQ: Fixing the config space
Let's change the function prototype, providing an access size:

static void vm_get(struct virtio_device *vdev, unsigned offset,
void *buf, unsigned len, unsigned access_size)

{
struct virtio_mmio_device *vm_dev = to_virtio_mmio_device(vdev);
int i;
switch (access_size) {
[...]
case 2: {
ul6é *ptr = buf;
for (i = 0; i < len; i++)
ptrlil = readw(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
break;
}
case 4: {
u32 *ptr = buf;
for (i = 0; i < len; i++)
ptr[i] = readl(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
break;
}
[...]
¥

Using the proper accessors (which are LE) solves the problem.

hitecture for the Digital Wol



virtio/MMIQ: Fixing the config space
Let's change the function prototype, providing an access size:

static void vm_get(struct virtio_device *vdev, unsigned offset,
void *buf, unsigned len, unsigned access_size)

{
struct virtio_mmio_device *vm_dev = to_virtio_mmio_device(vdev);
int i;
switch (access_size) {
[...]
case 2: {
ul6é *ptr = buf;
for (i = 0; i < len; i++)
ptr[i]l = readw(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
break;
}
case 4: {
u32 *ptr = buf;
for (i = 0; i < len; i++)
ptr[i] = readl(vm_dev->base + VIRTIO_MMIO_CONFIG + offset + i);
break;
}
[...]
¥

Using the proper accessors (which are LE) solves the problem.
At the expense of quite a few changes across all virtio drivers...

Digital Wor



virtio/MMIQ: One ring to BEnd them all

The virtio-ring can contain pure data, but also:
» Structures that are part of the virtio protocol
— vring_desc, vring_avail...
» Data Directly parsed by the device backend
— Depend on the device protocol itself
» When guest and host don't agree on endianness, things get a
bit ugly

hitecture for the Digital Worl



virtio/MMIQ: One ring to BEnd them all

The virtio-ring can contain pure data, but also:
» Structures that are part of the virtio protocol
— vring_desc, vring_avail...
» Data Directly parsed by the device backend
— Depend on the device protocol itself
» When guest and host don't agree on endianness, things get a
bit ugly
So what do we do?

» One possibility would be to declare all data to be LE
— Breaks existing BE users
— Could be an option for long term future, though
» Another is to add an endianness negotiation phase to the
setup protocol
— We have to make sure this gracefully falls back to the existing
behaviour with unsuspecting guests

The Architecture for the Digital VWorld® ARM



virtio/MMIQ: One ring to BEnd them all

When a guest initializes a virtio device, it engages in a “feature
negotiation” phase
For each virtio queue the guest initializes:
» Guest reads “feature flags” from the host
» Guest clears flags it doesn't support (or doesn't understand)
> Guest writes the flags it has selected back to the host
We can leverage this negotiation phase to our benefit:
> Let’s define two new flags

—» VIRTIO_RING_F_GUEST_LE: LE guest
— VIRTIO_RING_F_GUEST_BE: BE guest
» The host can set either or both, depending on the endianness
it supports
> The guest can keep the one corresponding to its endianness,
or clear both.
— It can't keep them both on!

T L e meogawoe ARM



virtio/MMIQ: One ring to BEnd them all
So how does this work in practice:
Host can expose whatever endianness it supports, or none
Guest can expose the one it uses, or none
“none” is the current behaviour...
Very finely grained — done on a per-queue basis

vV vyVvYyy

The Architecture for the Digital Worl



virtio/MMIQ: One ring to BEnd them all
So how does this work in practice:

> Host can expose whatever endianness it supports, or none
» Guest can expose the one it uses, or none
> “none” is the current behaviour...

Very finely grained — done on a per-queue basis

Added bonus:

» Selected at run time
— No need for a endian-specific platform emulation
» No overhead at init time
— Part of the feature negotiation phase
» Minimal overhead at run time
— Platform emulation locally tests the queue flag
— No need to trap into the kernel to find out
— No hardcoded behaviour
» Architecture independant
— Assuming your platform is bi-endian

m‘_ ‘ The Architecture for the Digital VWorld® ARM

v



virtio/MMIQ: One ring to BEnd them all

And the guest side patch for that is incredibly small:

diff --git a/drivers/virtio/virtio_ring.c b/drivers/virtio/virtio_ring.c
index 6b4addb..efff20a 100644

--- a/drivers/virtio/virtio_ring.c

+++ b/drivers/virtio/virtio_ring.c

@@ -813,6 +813,14 @@ void vring_transport_features(struct virtio_device *vdev)

break;
case VIRTIO_RING_F_EVENT_IDX:
break;
+#ifdef __LITTLE_ENDIAN
+ case VIRTIO_RING_F_GUEST_LE:
+#endif
+#ifdef __BIG_ENDIAN
+ case VIRTIO_RING_F_GUEST_BE:
+#endif
+ break;

default:

/* We don't understand this bit. */
clear_bit (i, vdev->features);




kvmtool: Handling mixed-endianness

kvmtool is the primary tool for KVM/arm64 development, as it
makes a wonderful prototyping platform:

» Implements the queue endianness extension
» Extensive changes in the queue management
» virt_queue__available()
» virt_queue__pop()
» virt_queue__get_head_iov()
>
» most of tools/kvm/virtio/core.c, actually
» A number of backends
» console
block
9
net (uip)

v vy

‘ hitecture for the Digital World®



kvmtool: let there BE...
The result:

rootQgenericarmv7ab:~# cat /proc/cpuinfo

processor : 0O

model name : ARMv7 Processor rev 0 (v7b)

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae
CPU implementer : O0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xdOf

CPU revision : 0

processor : 1

model name : ARMv7 Processor rev 0 (v7b)

Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae
CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : O0xdOf

CPU revision : 0

Hardware : Dummy Virtual Machine

Revision : 0000
Serial : 0000000000000000

ARMv7 BE VM running on top of an ARMv8 LE host. A lot of
headache for a very unspectacular result.

e Digital World'



What we end up with

» A virtio extention that is:

_)
_>
H
%
%

architecture independant
virtio-centric

easily implemented
efficient

optional

» A kvmtool implementation that is:

—
—

minimal
mostly made of bug-fixes

» A KVM/arm implementation that is 100% bug-fixes

The Architecture for the Digital Worl



What got fixed so far

Doing this work was an interesting opportunity to revisit some
areas of the code:

» Assumptions about the endianness in the KVM/arm code
— MMIO handling code has been substantially rewritten
— More to come...
» Configuration register access from the guest kernel
— Introduction of size-based accessors
— Signature check fix
» Endianness independance of the kvmtool virtio
implementation
— virtio queue rework
— device implementation fixes

hitecture for the Digital World®




What is left to fix

We're not quite done yet:

» A bunch of virtio devices are still left unloved

— scsi
— rng
— and probably more...

» Running LE guests on BE host

— Just in case you didn’t have enough

— Requires more fixes in KVM/arm code

— Probably some more in kvmtool

— Linux driver code should hopefully be in a decent shape

The Architecture for the Digital VWorld®



The future

The Architecture for the Digital VWorld® ARM



The future, more seriously

In parallel, work is being done on the virtio front to solve the
endianness problem for good (among others).
This virtio 1.0 specification would change:
» Everything is Little-Endian
— Native endianness has been forcefully eliminated
— Solves the problem in the long run

The Architecture for the Digital World®



The future, more seriously

In parallel, work is being done on the virtio front to solve the
endianness problem for good (among others).
This virtio 1.0 specification would change:
» Everything is Little-Endian
— Native endianness has been forcefully eliminated
— Solves the problem in the long run
But this also brings its own set of problems:
Two different driver implementations
» Two different device implementations
» Some kind of (transitionnal) compatibility mode between them
» Nothing is available now
This presentation is more about a short term solution.

v

m‘_ ‘ The Architecture for the Digital VWorld® ARM



The end

Questions?

The Architecture for the Digital VWorld® ARM



