
A block layer overview

Red Hat

Kevin Wolf

8 November 2012



Section 1

Overview



Overview

Parts of the QEMU block subsystem

Virtual devices

IDE, virtio-blk, ...

Backend
Block drivers

raw, qcow2, ...
file, nbd, iscsi, gluster...

I/O throttling, copy on read, ...

Block jobs

Streaming, mirroring, commit, ...

External tools

qemu-img, qemu-nbd, ...



Overview

Configuring a block device

On the command line:

-hda test.img

...is a shortcut for...

-drive file=test.img,if=ide,cache=writeback,aio=threads

...is a shortcut for...

-drive file=test.img,id=ide0-hd0,if=none,cache=writeback,aio=threads

-device ide-drive,bus=ide.0,drive=ide0-hd0



Section 2

Virtual devices



Virtual devices

Available devices (I)

Emulation of real hardware: Best compatibility
IDE:

Supported by basically every OS
Slow, only one request at a time

AHCI:

Supported by recent OSes
No live migration yet (to come with 1.3 or 1.4)

SCSI:

Emulated controllers used to be unreliable
QEMU 1.2 has new megasas device
Can’t boot from SCSI disks

Floppy, CD-ROM, USB Storage, ...



Virtual devices

Available devices (II)

Paravirtual devices: Best performance
virtio-blk:

Required drivers meanwhile commonly available
Relatively small feature set

virtio-scsi:

Still new, drivers only in very recent Linux
Uses SCSI command set

SCSI passthrough (scsi-generic/scsi-block)

Supports features of the real hardware
Still uses one of the emulated SCSI controllers
Needs a real block device, not just an image file



Virtual devices

Configuring advanced properties

Show all supported options for a device:
$ x86_64-softmmu/qemu-system-x86_64 -device ide-drive,help

ide-drive.drive=drive

ide-drive.logical_block_size=blocksize

ide-drive.physical_block_size=blocksize

ide-drive.min_io_size=uint16

ide-drive.opt_io_size=uint32

ide-drive.bootindex=int32

ide-drive.discard_granularity=uint32

ide-drive.ver=string

ide-drive.wwn=hex64

ide-drive.serial=string

ide-drive.model=string

ide-drive.unit=uint32

Setting options on the command line:
$ x86_64-softmmu/qemu-system-x86_64 \

-drive file=test.img,if=none,id=mydisk \

-device ide-drive,bus=ide.0,drive=mydisk,physical_block_size=4096



Section 3

Backends



Backends

Image format

raw

Highest possible performance
Almost no features (like snapshots etc.)

qcow2
Lots of features

Sparse images
Snapshots (internal and external)
Encryption
Compression

Somewhat slower (esp. initial writes)

VMDK, VHD, VDI...

Provided for compatibility
Best to convert to raw or qcow2 for running VMs



Backends

Image format performance

Pain point of image formats is initial writes (cluster allocation)

RFC patches for qcow2 (Delayed COW) help to close the gap

For the single-threaded case anyway

400

800

1200

1600

2000

qcow2
0.10.6

qcow2
0.11.1

qcow2
0.12.4

qcow2
0.12.5

qcow2
0.14.0

qcow2
1.0

qcow2
1.2

qcow2
Patch

QED
1.2

raw

1.2

Write throughput in kB/s during sequential cluster allocation; 8k blocks; cache=none (iozone)



Backends

Image format performance

Pain point of image formats is initial writes (cluster allocation)

RFC patches for qcow2 (Delayed COW) help to close the gap

For the single-threaded case anyway

8000

16000

24000

32000

40000

qcow2
0.10.6

qcow2
0.11.1

qcow2
0.12.4

qcow2
0.12.5

qcow2
0.14.0

qcow2
1.0

qcow2
1.2

qcow2
Patch

QED
1.2

raw

1.2

Write throughput in kB/s during sequential cluster allocation; 256k blocks; cache=none (iozone)



Backends

Backing storage

File

Local file system
NFS
-drive file=disk.img

Block device

Whole disk or partition
Logical volume
External implementation of iscsi, NBD, ...
-drive file=/dev/sda3

NBD

-drive file=nbd:localhost:10809

glusterfs

-drive file=gluster+tcp://1.2.3.4/testvol/a.img

...



Backends

Cache options

Use host page cache Guest disk WCE

writeback yes enabled

none no enabled

writethrough yes disabled

directsync no disabled

Default mode is writeback since 1.2

Write cache enabled (WCE) is safe for correct guest OS

WCE improves write performance a lot
Some older OSes are broken and ignore write caches

Risk of data corruption on host crash
Turn off WCE (only) for those (automatic on virtio-blk)

cache=unsafe e.g. for installation



Backends

Cache options

Use host page cache Guest disk WCE

writeback yes enabled

none no enabled

writethrough yes disabled

directsync no disabled

Usually you don’t want to use the host page cache

The guest has already a page cache
Data would be duplicated – waste of memory

But it can make sense in some cases

Many guests sharing the host cache
Short-lived guests

Must bypass host page cache for safe live migration



Backends

AIO mode

-drive aio=threads (Userspace thread pool)

Default mode
Tends to perform better on file systems
On all POSIX platforms

-drive aio=native (Linux AIO)

Tends to perform better on block devices
Only on Linux
Requires O DIRECT (cache=none/directsync)



Backends

Image format options

During image creation:
$ ./qemu-img create -f qcow2 -o help /tmp/test.qcow2

Supported options:

size Virtual disk size

compat Compatibility level (0.10 or 1.1)

backing_file File name of a base image

backing_fmt Image format of the base image

encryption Encrypt the image

cluster_size qcow2 cluster size

preallocation Preallocation mode (allowed values: off, metadata)

lazy_refcounts Postpone refcount updates

$ qemu-img create -f qcow2 -o compat=1.1,lazy_refcounts=on \

/tmp/test.qcow2 4G

-blockdev will enable driver-specific command line options



Section 4

Block jobs



Block jobs

Snapshots

External snapshots (backing files):

base sn1 sn2 sn3

COW layer over backing files (of any image format) saves delta
Cheap to create
Deleting a snapshot means copying all data

Internal snapshots (savevm/loadvm, qcow2 only):

Snapshot saved in the same image file
Creation and deletion both with some cost

Modify metadata, but no copy of data required

Can contain VM state
No live snapshots (VM stops while saving snapshot)
Receives less testing ⇒ Stability?



Block jobs

Block jobs

Introduced in QEMU 1.1 and extended in each release since

Long-running background jobs on block devices

Live storage migration
Deleting external snapshots

Started and controlled using monitor commands

Starting: Type specific command (e.g. block-stream)
Completion: Automatically or with block-job-complete
block-job-cancel
block-job-pause/resume
block-set-speed
query-block-jobs



Block jobs

Image streaming

base sn1 sn2 sn3 active

Full streaming

Partial streaming

Pull data from backing files into active layer

Backing files become redundant and can be removed

Use cases:

Copy an image from a slow source in the background while
running the VM
Delete topmost external snapshots

Since QEMU 1.1



Block jobs

Live commit

base sn1 sn2 sn3 active

Apply delta to backing file

Delete external snapshots

Will be in QEMU 1.3

Committing active layer not supported yet



Block jobs

Image mirroring

base sn1 sn2 sn3 active

mirrorsync=full

sync=top

Live storage migration

Copies data into new image
Guest writes are mirrored into the copy

Either full chain or only active layer

Will be in QEMU 1.3



Block jobs

Builtin NBD server

Not a block job, strictly speaking

Allows storage migration without shared storage

Destination QEMU starts NBD server
Source QEMU mirrors its image using an NBD connection

QEMU 1.3 or 1.4



Block jobs

The end.
Thanks for listening.


	Overview
	Virtual devices
	Backends
	Block jobs

