
© 2006 IBM Corporation

IBM Linux Technology Center

QIDL: An Embedded Language to Serialize
 Guest Data Structures for Live Migration

Michael Roth
mdroth@linux.vnet.ibm.com

IBM Linux Technology Center

© 2006 IBM Corporation

2

QIDL in a nutshell

 QEMU Interface Description Language
 Facilitates device state serialization
 Annotations for struct fields (similar to GCC attributes)

 describe how to serialize a field

 describe whether a field should/shouldn't be serialized

 QIDL parser processes annotations and generates QAPI
schemas for device state

 Existing QAPI code generator creates
serialization/deserialization routines

IBM Linux Technology Center

© 2006 IBM Corporation

3

Serializing/Deserializing device state

 Useful for introspection
 Device testing
 Migration (more on that later)

typedef struct RTCState {
 ...
 uint8_t cmos_data[128];
 uint8_t cmos_index;
 uint64_t base_rtc;
 uint64_t last_update;
 ...
} RTCState;

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 …
}

IBM Linux Technology Center

© 2006 IBM Corporation

4

QIDL in a nutshell

 QEMU Interface Description Language
 Facilitates device state serialization
 Annotations for struct fields (similar to GCC attributes)

 describe how to serialize a field

 describe whether a field should/shouldn't be serialized

 QIDL parser processes annotations and generates QAPI
schemas for device state

 Existing QAPI code generator creates
serialization/deserialization routines

IBM Linux Technology Center

© 2006 IBM Corporation

5

Disambiguating C types for serialization

 Can't always infer the proper way to serialize a field:
 Arrays

– size_t data_len;

– uint32_t *data;

 Is *data an array ptr? If so, how many elements?

– size_t data_len;

– uint32_t q_size(data_len) *data;

 Character arrays vs. null-terminated strings

– char my_char_array[64];

– char q_string my_string[64]

IBM Linux Technology Center

© 2006 IBM Corporation

6

QIDL in a nutshell

 QEMU Interface Description Language
 Facilitates device state serialization
 Annotations for struct fields (similar to GCC attributes)

 describe how to serialize a field

 describe whether a field should/shouldn't be serialized

 QIDL parser processes annotations and generates QAPI
schemas for device state

 Existing QAPI code generator creates
serialization/deserialization routines

IBM Linux Technology Center

© 2006 IBM Corporation

7

Determining what to serialize

 Serialize everything by default
 Strict conditions for exempting fields from serialization

(rarely needed)
 Handful of annotations to handle this:

 q_immutable

 q_derived

 q_elsewhere

IBM Linux Technology Center

© 2006 IBM Corporation

8

QIDL in a nutshell

 QEMU Interface Description Language
 Facilitates device state serialization
 Annotations for struct fields (similar to GCC attributes)

 describe how to serialize a field

 describe whether a field should/shouldn't be serialized

 QIDL parser processes annotations and generates QAPI
schemas for device state

 Existing QAPI code generator creates
serialization/deserialization routines

IBM Linux Technology Center

© 2006 IBM Corporation

9

Converts Annotated Devices to QAPI Schemas

 Same schema format used for:
 QMP
 Guest Agent
 Netdev options (QemuOpts->C)

QIDL_DECLARE(RTCState) {
 ...
 uint8_t cmos_data[128];
 uint8_t cmos_index;
 uint64_t base_rtc;
 QEMUTimer *periodic_timer;
 ...
};

{
 'type': 'RTCState',
 'data': {
 'cmos_data': {
 '<annotated>': 'true',
 'type': ['uint8'],
 'array_size': 128,
 },
 'cmos_index': 'uint8',
 'base_rtc': 'uint64',
 'periodic_timer': 'QEMUTimer',
 ...
 },
}

IBM Linux Technology Center

© 2006 IBM Corporation

10

QIDL and Migration

 Currently we mostly use VMState to handle migration
 Associates wire fields with struct fields

 Per-device/and per-field versioning

 Post-load functions can handle old->new translations (if we keep
legacy fields, or legacy fields proved unrequired to begin with)

 Subsections can avoid the need for new->old translations (if we
don't make use of new fields)

 Pre-save functions can handle new->old translations (if we keep
legacy fields, no exceptions)

 But often we don't keep legacy fields around...

IBM Linux Technology Center

© 2006 IBM Corporation

11

Migration via VMState
typedef struct RTCState {
 ...
 uint8_t cmos_data[128];
 uint8_t cmos_index;
 uint64_t base_rtc;
 uint64_t last_update;
 ...
} RTCState;

static const VMStateDescription vmstate_rtc = {
 .name = "mc146818rtc",
 .version_id = 3,
 .minimum_version_id = 1,
 .minimum_version_id_old = 1,
 .post_load = rtc_post_load,
 .fields = (VMStateField []) {
 VMSTATE_BUFFER(cmos_data, RTCState),
 VMSTATE_UINT8(cmos_index, RTCState),
 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 VMSTATE_UINT64_V(last_update, RTCState, 3),
 ...
 VMSTATE_END_OF_LIST()
 }
};

source/target guest

IBM Linux Technology Center

© 2006 IBM Corporation

12

QIDL and Migration

 Currently we mostly use VMState to handle migration
 Associates wire fields with struct fields

 Per-device/and per-field versioning

 Post-load functions can handle old->new translations (if we keep
legacy fields, or legacy fields proved unrequired to begin
with)

 Subsections can avoid the need for new->old translations (if we
don't make use of new fields)

 Pre-save functions can handle new->old translations (if we keep
legacy fields, no exceptions)

 But often we don't keep legacy fields around...

IBM Linux Technology Center

© 2006 IBM Corporation

13

Legacy fields tend to get dropped over time

mdroth@loki:~/w/qemu.git$ grep -r VMSTATE hw | grep UNUSED
hw/e1000.c: VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
hw/e1000.c: VMSTATE_UNUSED(4), /* Was mmio_base. */
hw/pxa2xx_dma.c: VMSTATE_UNUSED_TEST(is_version_0, 4),
hw/mc146818rtc.c: VMSTATE_UNUSED(7*4),
hw/mc146818rtc.c: VMSTATE_UNUSED(3*8),
hw/eeprom93xx.c: VMSTATE_UNUSED_TEST(is_old_eeprom_version, 1),
hw/zaurus.c: VMSTATE_UNUSED_TEST(is_version_0, 2),
hw/stellaris.c: VMSTATE_UNUSED(8),
hw/spitz.c: VMSTATE_UNUSED_TEST(is_version_0, 5),
hw/ne2000.c: VMSTATE_UNUSED(4), /* was irq */
hw/pcnet.c: VMSTATE_UNUSED_TEST(is_version_2, 4),
hw/kvmvapic.c: VMSTATE_UNUSED(8), /* signature */
hw/rtl8139.c: VMSTATE_UNUSED(4),
hw/ac97.c: VMSTATE_UNUSED_TEST (is_version_2, 3),
hw/eepro100.c: VMSTATE_UNUSED(32),
hw/eepro100.c: VMSTATE_UNUSED(3*4),
hw/eepro100.c: VMSTATE_UNUSED(19*4),
hw/ioapic_common.c: VMSTATE_UNUSED_V(2, 8), /* to account for qemu-kvm's v2 format */

IBM Linux Technology Center

© 2006 IBM Corporation

14

QIDL and Migration

 Goal: Long-term, same-machine-level migration compatibility
 Lock in the wire protocol for pc-X after each release

 Documented, stable wire protocol for pc-1.0, pc-1.1, etc.

 During migration, translate internal device representation to the
appropriate wire protocol based on the current machine level.

 Basically, do what we do for -M pc-X for VMState as well.

 What does QIDL have to do with any of this?

IBM Linux Technology Center

© 2006 IBM Corporation

15

QIDL and Migration

 Could do better now
 Move legacy fields into compat structs

 Add version-aware pre_save routines to derive legacy values
from current device representation

 Allow use of older vmstate version for outgoing migration

 Still skirting around the main issue
 VMState is too tightly coupled to our internal device

representations

 Ideally: a VMState describes the API for instantiating a device
for -M 1.0, or -M 1.1, etc

 Our input is something we generate dynamically

IBM Linux Technology Center

© 2006 IBM Corporation

16

Leveraging QIDL for Migration

 QIDL serializes device state to arbitrary formats, including
QObjects

 Paths to fields in serialized objects correspond closely to
struct fields

 Legacy fields can be computed and added to object dynamically
 VMStateDescriptions can use stringified fields to key into the

translated object

IBM Linux Technology Center

© 2006 IBM Corporation

17

Serializing/Deserializing device state

serialize

typedef struct RTCState {
 ...
 uint8_t cmos_data[128];
 uint8_t cmos_index;
 uint64_t base_rtc;
 uint64_t last_update;
 ...
} RTCState;

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 …
}

IBM Linux Technology Center

© 2006 IBM Corporation

18

Leveraging QIDL for Migration

 QIDL serializes device state to arbitrary formats, including
QObjects

 Paths to fields in serialized objects correspond closely to struct
fields

 Transformations on qobject can compute legacy fields and
add them dynamically

 Can chain transformations to reduce maintenance (similar to how
we handle qdev properties)

 VMStateDescriptions can use stringified fields to key into the
translated object

IBM Linux Technology Center

© 2006 IBM Corporation

19

Compatibility Transformations

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 …
}

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 “current_tm”: {
 “tm_sec”: 22,
 ...
 },
 ...
}

1.3 → 1.2

1.3 ← 1.2

IBM Linux Technology Center

© 2006 IBM Corporation

20

Leveraging QIDL for Migration

 QIDL serializes device state to arbitrary formats, including
QObjects

 Paths to fields in serialized objects correspond closely to struct
fields

 Transformations on qobject can compute legacy fields and
add them dynamically

 Can chain transformations to reduce maintenance (similar to
how we handle qdev properties)

 VMStateDescriptions can use stringified fields to key into the
translated object

IBM Linux Technology Center

© 2006 IBM Corporation

21

Chained Compatibility Transformations

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 …
}

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 “current_tm”: {
 “tm_sec”: 22,
 ...
 },
 ...
}

1.3 → 1.2

1.3 ← 1.2

1.2 → 1.1

1.2 ← 1.1

{
 "cmos_data": [
 57,
 0,
 …
],
 "cmos_index": 15,
 "base_rtc": 1351877119,
 "last_update":
 1351877119938261000,
 “current_tm”: {
 “tm_sec”: 22,
 ...
 },
 ...
}

IBM Linux Technology Center

© 2006 IBM Corporation

22

Leveraging QIDL for Migration

 QIDL serializes device state to arbitrary formats, including
QObjects

 Paths to fields in serialized objects correspond closely to struct
fields

 Transformations on qobject can compute legacy fields and add
them dynamically

 Can chain transformations to reduce maintenance (similar to how
we handle qdev properties)

 VMStateDescriptions can use stringified fields to key into
the translated object

IBM Linux Technology Center

© 2006 IBM Corporation

23

Putting it all Together

QIDL
Serialized

state
N-1
xlate

N-2
xlate

N
vmstate

N-1
vmstate

N-2
vmstate

 -M pc-(n-2)

-M pc-(n-1)

-M pc-N

IBM Linux Technology Center

© 2006 IBM Corporation

24

Status and Future Plans

 Patches on the list for base infrastructure
 Patches on the list for first set of device conversions:

 PCI, piix3-ide, mc146818rtc, hpet, cirrus-vga, PIIX3, i440FX,
pci-bridge

 Standard PC devices by 1.4, underway
 QIDL-compatible VMState by 1.4, depending community

feedback
 Convert individual devices to using QIDL for migration on an as-

needed basis

IBM Linux Technology Center

© 2006 IBM Corporation

25

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

