
Asynchronous page faults
Aix did it

Red Hat

Author Gleb Natapov

August 10, 2010

Abstract

Host memory overcommit may cause guest memory to be
swapped. When guest vcpu access memory swapped out by a
host its execution is suspended until memory is swapped back.
Asynchronous page fault is a way to try and use guest vcpu
more efficiently by allowing it to execute other tasks while
page is brought back into memory.



Part I

How KVM Handles Guest Memory and What
Inefficiency it Has With Regards to Host
Swapping



Mapping guest memory into host memory



But we do it on demand



Page fault happens on first guest access



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



What happens on a page fault?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

no previously mapped page and no swap entry found
empty page is allocated

5 page is added into shadow/nested page table



On each page fault one page is mapped



At the end all used pages are mapped



Swapped out page is removed from shadow pt



Page is accessed again



What happens on a page fault now?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

swap entry is found
page swap-in process is initiated
vcpu thread goes to sleep until page is swapped in

5 page is added into shadow/nested page table



What happens on a page fault now?

1 VMEXIT

2 kvm mmu page fault()

3 gfn to pfn()

4 get user pages fast()

swap entry is found
page swap-in process is initiated
vcpu thread goes to sleep until page is swapped in

5 page is added into shadow/nested page table



New shadow pt mapping is created



Part II

Lets take close look inside a guest



Different pages belong to different processes



Page belonging to Process A is swapped out



Process A tries to access its page again



New shadow pt mapping is created



Part III

What is Asynchronous Page Fault and How it
Can Help us



Asynchronous Page Fault (APF)
New kind of exception

Actually it is not one, but two kind of exceptions:

APF: Page not Present

Guest tried to access page which is swapped out by a hypervisor.

APF: Page Ready

Page is now swapped in and can be accessed from a guest



APF shares exception vector with regular #PF

PV guest can distinguish between regular page fault and APF by
checking fault reason in per cpu memory location. It would be nice
to have one exception vector to be reserved for virtualization
purposes by Intel and AMD.



How it Work

Process A accesses page swapped
out by the host.

GUP is done by dedicated thread.
Vcpu gets “Page not Present”
exception.

Guest puts Process A to sleep and
schedule another process.

Page is ready. Vcpu gets “Page
Ready” exception.

Guest can schedule Process A back
to run on vcpu.



How it Work

Process A accesses page swapped
out by the host.

GUP is done by dedicated thread.
Vcpu gets “Page not Present”
exception.

Guest puts Process A to sleep and
schedule another process.

Page is ready. Vcpu gets “Page
Ready” exception.

Guest can schedule Process A back
to run on vcpu.



How it Work

Process A accesses page swapped
out by the host.

GUP is done by dedicated thread.
Vcpu gets “Page not Present”
exception.

Guest puts Process A to sleep and
schedule another process.

Page is ready. Vcpu gets “Page
Ready” exception.

Guest can schedule Process A back
to run on vcpu.



How it Work

Process A accesses page swapped
out by the host.

GUP is done by dedicated thread.
Vcpu gets “Page not Present”
exception.

Guest puts Process A to sleep and
schedule another process.

Page is ready. Vcpu gets “Page
Ready” exception.

Guest can schedule Process A back
to run on vcpu.



How it Work

Process A accesses page swapped
out by the host.

GUP is done by dedicated thread.
Vcpu gets “Page not Present”
exception.

Guest puts Process A to sleep and
schedule another process.

Page is ready. Vcpu gets “Page
Ready” exception.

Guest can schedule Process A back
to run on vcpu.



Enhancing GUP

Need GUP version that will succeed only if page can be
acquired without IO.

get user pages fast() is not good enough. Will fail if
page is in page or swap cache.

Introduce new GUP variant: get user pages noio().



Part IV

Test Results



Benchmark

Application:

4 threads doing random memory access (faulting threads)

4 threads incrementing per thread counter (working threads)

running for 1 minute

output per thread counter value and sum of all counters

Execution environment:

4 VCPUS

2G guest memory

runs inside 512M memory group ∗

∗ 1
4
overcommit



Results

With async pf:
worker 0: 63972141051
worker 1: 65149033299
worker 2: 66301967246
worker 3: 63423000989
total: 258846142585

Without async pf:
worker 0: 30619912622
worker 1: 33951339266
worker 2: 31577780093
worker 3: 33603607972
total: 129752639953

50% improvement!



Perf data from inside the guests
With async pf:
97.93% bm bm [.] work thread

1.74% bm [kernel] [k] retint careful

0.10% bm [kernel] [k] raw spin unlock irq

0.08% bm bm [.] fault thread

0.05% bm [kernel] [k] raw spin unlock irqrestore

0.02% bm [kernel] [k] do softirq

0.02% bm [kernel] [k] rcu process gp end

Without async pf:
63.42% bm bm [.] work thread

13.64% bm [kernel] [k] do softirq

8.95% bm bm [.] fault thread

5.27% bm [kernel] [k] raw spin unlock irq

2.79% bm [kernel] [k] hrtimer run pending

2.35% bm [kernel] [k] run timer softirq

1.28% bm [kernel] [k] raw spin lock irq



The end.
Thanks for listening.


	How KVM Handles Guest Memory and What Inefficiency it Has With Regards to Host Swapping
	Lets take close look inside a guest
	What is Asynchronous Page Fault and How it Can Help us
	Test Results

