
Security in QEMU
How Virtual Machines provide Isolation

Stefan Hajnoczi <stefanha@redhat.com>
KVM Forum 2018

mailto:stefanha@redhat.com

KVM Forum 20182

About me

Reviewer of CVE fixes

Participant in vulnerability disclosure process

QEMU contributor since 2010

Member of Red Hat’s virtualization team

KVM Forum 20183

QEMU Security Process

Found a security bug or not sure if it’s a security bug?

https://wiki.qemu.org/SecurityProcess

Please follow this process so fixes can be rolled out with minimal
risk to users.

https://wiki.qemu.org/SecurityProcess

KVM Forum 20184

Use Cases and their Security Requirements

Many QEMU use cases exist

They have different security requirements

Toy kernel development

Guest is trusted
User is trusted
No internet access

Which security requirements does
QEMU fulfill?

Are they a superset of my use case’s
requirements?

KVM Forum 20185

How do we agree on Security Requirements?

This won’t be exposed to the
internet, let’s just merge it

There can never be more
than 10k LOC so auditing is easy

Risky but quick to develop Impractical but minimal risk

The community has a consensus that works for its participants

It evolves over time as people join or leave the project

KVM Forum 20186

QEMU’s Security Requirements
For virtualization use cases:

● Guest is untrusted
● User-facing interfaces are untrusted (e.g. remote desktop)
● Network protocols are untrusted
● User-supplied files are untrusted

Non-virtualization use cases are not backed by security claims
● TCG (just-in-time compiler) use cases rely on old unaudited code

(Check SecurityProcess wiki page for latest info if reading in future)

https://wiki.qemu.org/SecurityProcess

KVM Forum 20187

Fine-grained Security Support List needed?

Not all QEMU features are hardened and production-quality

Downstreams support a subset of features

Safe features may not be apparent to upstream newcomers

Wish: Let’s create a fine-grained “safe features” list

KVM Forum 20188

Architecture (QEMU, KVM/TCG, libvirt)

Management
tools

(libvirt)

kvm.ko vhost_net.ko

Guest
RAM

QEMU

Guest
RAM

QEMU

Host kernel

Host userspace

Focus of
this talk

KVM Forum 20189

QEMU Guest Isolation (1)

1. The guest must not gain control of QEMU

Attack surfaces:
● Device emulation
● TCG (not covered in this presentation)

Guest
RAM

QEMU

KVM Forum 201810

QEMU Guest Isolation (2)

2. Must not gain access to other guests

Traditional attacks on
other guests are possible
over the network, but
another vector exists if
you gain control of
QEMU

Guest
RAM

QEMU

Guest
RAM

QEMU
1 2

KVM Forum 201811

QEMU Guest Isolation (3)

3. Must not gain control of host kernel Guest
RAM

QEMU

kvm.ko vhost_net.ko
Host kernel

Host userspace

KVM Forum 201812

Defense in Depth

The virtualization stack consists of layers

Compromising one layer must not compromise the entire system

Makes it more challenging for an attacker

KVM Forum 201813

Securing the QEMU Process

Management tools (e.g. libvirt) should:
● Run QEMU as an unprivileged user
● Restrict the QEMU process using SELinux to prevent access to

other guests’ disks or debugging them (ptrace)
● Configure resource controls on the QEMU process

Always check your management tool is doing this!
● If you run QEMU manually or with a custom tool, beware.

KVM Forum 201814

Theory: Principle of least Privilege

QEMU only has resources belonging to
this specific guest

If guest escapes into QEMU
it does not gain access to
other resources!

When implemented perfectly, guest escape
only provides access to the same resources
as within the guest but with the native API

Guest
RAM

QEMU

Host kernel

Host userspace

KVM Forum 201815

Practice: Principle of least Privilege
Escaping into QEMU exposes native APIs unavailable in the guest

SELinux and seccomp reduce the host userspace attack surface, but
restricting everything is hard

● See Eduardo Otubo’s QEMU Sandboxing for Dummies talk

Escaping into QEMU may give access to storage network
● Protect network disks with authentication (iSCSI, Ceph, etc)

Resource limits implemented by QEMU, like rate-limits, can be
bypassed once QEMU is compromised

https://www.slideshare.net/EduardoOtubo/qemu-sandboxing-for-dummies

KVM Forum 201816

Recap: Principle of least Privilege

Design new features to only give QEMU access to resources
belonging to the guest

Sometimes exceptions are necessary for practical reasons
and this should be documented

KVM Forum 201817

Real-world QEMU Security Bugs

What do real bugs look like? How can they be prevented?

https://www.cvedetails.com/vulnerability-list/vendor_id-7506/Qemu.html

KVM Forum 201818

CVE-2015-3456 – VENOM

Guest-triggerable buffer overflow in floppy disk controller code:

$ git show e9077462

@@ -2004,7 +2007,9 @@ static void fdctrl_write_data(...)

 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);

- fdctrl->fifo[fdctrl->data_pos++] = value;

+ pos = fdctrl->data_pos++;

+ pos %= FD_SECTOR_LEN;

+ fdctrl->fifo[pos] = value;

https://git.qemu.org/?p=qemu.git;a=commitdiff;h=e907746266721f305d67bc0718795fedee2e824c

KVM Forum 201819

Device Emulation Security Checklist

1. C programming bugs (buffer overflows, use-after-free, etc)

2. Validate inputs from guest

3. Handle device accesses at unexpected moments or in an unusual
 order (e.g. submitting another request while one is pending)

4. Validate migration state upon load

5. Copy in guest memory (other vcpus race with your thread)

KVM Forum 201820

Other Attack Surfaces

User-facing interfaces are untrusted (VNC, SPICE)

Network protocols (WebSocket, NBD, etc)

User-supplied files (kernel images, disk images)

KVM Forum 201821

CVE-2017-14167 – multiboot loader

Kernel loader for multiboot files forgot to validate inputs

Heap buffer overflow triggered by malicious multiboot file

$ git show ed4f86e8

 mbs.mb_buf = g_malloc(mb_kernel_size);

 fseek(f, mb_kernel_text_offset, SEEK_SET);

 if (fread(mbs.mb_buf, 1, mb_load_size, f) !=

Values from
untrusted file

https://git.qemu.org/?p=qemu.git;a=commitdiff;h=ed4f86e8b6eff8e600c69adee68c7cd34dd2cccb

KVM Forum 201822

The HMP/QMP Monitor

Provides administrative access to guest

Same abilities as QEMU process to access files on host, etc

Do not expose the monitor directly to untrusted users!*

* Monitor white-list has been discussed as future solution

KVM Forum 201823

What can we learn from the bugs?

Many are Denial of Service and not memory corruption (good!)

Actually gaining access to other guests or host kernel requires
additional steps → defense in depth

C coding bugs (integer overflows, buffer overflows, etc) are common

KVM Forum 201824

How do we improve QEMU Security? (1)

Finding bugs early
● Static analysis tools - already in use today
● Fuzzing attack surfaces – limited activity upstream
● Code audits – we have code review but no formal audit activity

(Remember bugs found in code for non-virtualization use cases may
not be treated as security bugs)

KVM Forum 201825

How do we improve QEMU Security? (2)
Mitigating impact of bugs

● Sandboxing – what’s next after SELinux and seccomp?
● Multi-process QEMU – smaller processes can be sandboxed

more effectively
● Modules – only load features as needed to reduce code available

to exploits relying on return-oriented programming
● Compiling out features – for example ./configure --disable-tcg

is now possible!

KVM Forum 201826

How do we improve QEMU Security? (3)

Eliminating sources of bugs
● Using a “safe” programming language – Rust has been discussed
● Restricting ourselves to safe APIs – bounds-checked FIFO

instead of open-coded C array

KVM Forum 201827

Get Involved

A lot of activity underway to improve security

Participate in approaches that interest you

Discuss on the QEMU mailing list <qemu-devel@nongnu.org>

mailto:qemu-devel@nongnu.org

KVM Forum 201828

Thank you!

My blog: https://blog.vmsplice.net/

IRC: stefanha on #qemu irc.oftc.net

https://blog.vmsplice.net/

KVM Forum 201829

CVE-2016-9602 – virtfs root directory escape

O_NOFOLLOW still follows symlinks in dirname

Malicious guests can provide a path with a symlink

@@ -359,13 +378,9 @@ static int local_closedir(…

 static int local_open(FsContext *ctx,…

 {

- fd = open(buffer, flags | O_NOFOLLOW);

+ fd = local_open_nofollow(ctx, fs_path->data, …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

