
© 2006 IBM Corporation

IBM Linux Technology Center

QContext, and Supporting 
Multiple Event Loop Threads 

in QEMU

Michael Roth
mdroth@linux.vnet.ibm.com



IBM Linux Technology Center

© 2006 IBM Corporation

QEMU Threading Model Overview

 Historically (earlier this year), there were 2 main types of threads 
in QEMU:

 vcpu threads – handle execution of guest code, and emulation 
of hardware access (pio/mmio) and other trapped instructions

 QEMU main loop (iothread) – everything else (mostly) 
 GTK/SDL/VNC UIs

 QMP/HMP management interfaces

 Clock updates/timer callbacks for devices

 device I/O on behalf of vcpus



IBM Linux Technology Center

© 2006 IBM Corporation

QEMU Threading Model Overview

 All core qemu code protected by global mutex
 vcpu threads in KVM_RUN can run concurrently thanks to 

address space isolation, but attempt to acquire global mutex 
immediately after an exit

 Iothread requires global mutex whenever it's active



IBM Linux Technology Center

© 2006 IBM Corporation

High contention as threads or I/O scale

  

vcpu 1

vcpu n

vcpu 2

iothread



IBM Linux Technology Center

© 2006 IBM Corporation

QEMU Thread Types

 vcpu threads
 iothread
 virtio-blk-dataplane thread

 Drives a per-device AioContext via aio_poll

 Handles event fd callbacks for virtio-blk virtqueue notifications and 
linux_aio completions

 Uses port of vhost's vring code, doesn't (currently) use core QEMU 
code, doesn't require global mutex

 Will eventually re-use QEMU block layer code



IBM Linux Technology Center

© 2006 IBM Corporation

QEMU Block Layer Features

 Multiple image format support
 Snapshots
 Live Block Copy
 Live Block migration
 Drive-mirroring
 Disk I/O limits
 Etc...



IBM Linux Technology Center

© 2006 IBM Corporation

More dataplane in the future

 Scalable, high performance I/O with full feature support is a big 
win for users

 Likely to see more dataplane implementations in the future 
(virtio-scsi, virtio-net, NetClients?)



IBM Linux Technology Center

© 2006 IBM Corporation

How do we manage these event loops?

 Ad-hoc event loop implementations?
 How to handle event assignment? 1 thread per device? What 

about multiqueue?
 Multiple devices per thread?
 Standard command-line syntax?
 Re-configurable at runtime?



IBM Linux Technology Center

© 2006 IBM Corporation

QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to 
offload a set of events

 Each QContext can drive a set of event sources (AioContexts, 
GSources, etc)

 Can be managed/introspected via QOM properties



IBM Linux Technology Center

© 2006 IBM Corporation

QContext basic usage 

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,...

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           -object qcontext,id=ctx2,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx2,... \
           ...



IBM Linux Technology Center

© 2006 IBM Corporation

QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to offload a 
set of events

 Each QContext can drive a set of event sources 
(AioContexts, GSources, etc)

 Can be managed/introspected via QOM properties



IBM Linux Technology Center

© 2006 IBM Corporation

Consolidating dataplane threads

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           ...



IBM Linux Technology Center

© 2006 IBM Corporation

QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to offload a 
set of events

 Each QContext can drive a set of event sources (AioContexts, 
GSources, etc)

 Can be managed/introspected via QOM properties



IBM Linux Technology Center

© 2006 IBM Corporation

Consolidating dataplane threads

mdroth@loki:~$ qom-list /objects/                                         
ctx1/
qcontext-main/
type

mdroth@loki:~$ qom-list /objects/ctx1
thread_id
threaded
id
type

mdroth@loki:~$ qom-get /objects/ctx1.thread_id
6787



IBM Linux Technology Center

© 2006 IBM Corporation

Main Loop Event Sources

Main Loop
IOHandler list

GSources

QEMUTimers

AioContext

...

AioHandlers

Bottom-Halves

Slirp

QEMUTimers



IBM Linux Technology Center

© 2006 IBM Corporation

Event Registration – IOHandlers

Main Loop
IOHandler list

GSources

QEMUTimers

AioContext

...

AioHandlers

Bottom-Halves

 qemu_set_fd_handler(fd, fd_read_fn, fd_write_fn, user_data)
 qemu_set_fd_handler2(fd, read_poll_cb, read_cb, write_cb, user_data)
 set_fd_handler2(ctx, fd, read_poll_cb, read_cb, write_cb, user_data)

 Needs to be thread-safe now (or does it?)

Slirp

QEMUTimers



IBM Linux Technology Center

© 2006 IBM Corporation

Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock
 Defer registration via bottom-halfs

set_fd_handler(fd, …):
  lock(iohandler_list)
  iohandler_list.modify(fd1, …)
  unlock(iohandler_list)

iohandler_dispatch:
  lock(iohandler)
  For iohandler in iohandler_list:
  dispatch(iohandler)
  → set_fd_handler(fd, ...)
  unlock(iohandler)



IBM Linux Technology Center

© 2006 IBM Corporation

Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock
 Defer registration via bottom-halfs



IBM Linux Technology Center

© 2006 IBM Corporation

Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock, 

but can drop all locks prior to avoid lock-order reversal. Ugly.
 Defer registration via bottom-halfs

lock(tap_mutex)
set_fd_handler(ctx, fd, …):
  gmc_acquire(ctx)
  iohandler_list.modify(fd1, …)
  unlock(iohandler_list)
  gmc_release(ctx)
unlock(tap_mutex)

iohandler_dispatch:
  gmc_acquire(ctx)
  For iohandler in iohandler_list:
  dispatch(iohandler)
  → lock(tap_mutex)
  unlock(iohandler)
  gmc_release(ctx)



IBM Linux Technology Center

© 2006 IBM Corporation

Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock
 Defer registration via bottom-halfs



IBM Linux Technology Center

© 2006 IBM Corporation

Questions




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

