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QEMU Threading Model Overview

 Historically (earlier this year), there were 2 main types of threads 
in QEMU:

 vcpu threads – handle execution of guest code, and emulation 
of hardware access (pio/mmio) and other trapped instructions

 QEMU main loop (iothread) – everything else (mostly) 
 GTK/SDL/VNC UIs

 QMP/HMP management interfaces

 Clock updates/timer callbacks for devices

 device I/O on behalf of vcpus



IBM Linux Technology Center

© 2006 IBM Corporation

QEMU Threading Model Overview

 All core qemu code protected by global mutex
 vcpu threads in KVM_RUN can run concurrently thanks to 

address space isolation, but attempt to acquire global mutex 
immediately after an exit

 Iothread requires global mutex whenever it's active
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High contention as threads or I/O scale

  

vcpu 1

vcpu n

vcpu 2

iothread
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QEMU Thread Types

 vcpu threads
 iothread
 virtio-blk-dataplane thread

 Drives a per-device AioContext via aio_poll

 Handles event fd callbacks for virtio-blk virtqueue notifications and 
linux_aio completions

 Uses port of vhost's vring code, doesn't (currently) use core QEMU 
code, doesn't require global mutex

 Will eventually re-use QEMU block layer code
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QEMU Block Layer Features

 Multiple image format support
 Snapshots
 Live Block Copy
 Live Block migration
 Drive-mirroring
 Disk I/O limits
 Etc...
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More dataplane in the future

 Scalable, high performance I/O with full feature support is a big 
win for users

 Likely to see more dataplane implementations in the future 
(virtio-scsi, virtio-net, NetClients?)
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How do we manage these event loops?

 Ad-hoc event loop implementations?
 How to handle event assignment? 1 thread per device? What 

about multiqueue?
 Multiple devices per thread?
 Standard command-line syntax?
 Re-configurable at runtime?
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QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to 
offload a set of events

 Each QContext can drive a set of event sources (AioContexts, 
GSources, etc)

 Can be managed/introspected via QOM properties
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QContext basic usage 

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,...

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           -object qcontext,id=ctx2,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx2,... \
           ...
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QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to offload a 
set of events

 Each QContext can drive a set of event sources 
(AioContexts, GSources, etc)

 Can be managed/introspected via QOM properties
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Consolidating dataplane threads

qemu -object qcontext,id=ctx1,threaded=yes \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           -device virtio-blk,x-data-plane=on,context=ctx1,... \
           ...
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QContext Overview 

 Object that represents an event loop
 QOM-based object, can be instantiated via -object

 creates it's own event loop thread

 unique id that can be passed to any devices that want to offload a 
set of events

 Each QContext can drive a set of event sources (AioContexts, 
GSources, etc)

 Can be managed/introspected via QOM properties



IBM Linux Technology Center

© 2006 IBM Corporation

Consolidating dataplane threads

mdroth@loki:~$ qom-list /objects/                                         
ctx1/
qcontext-main/
type

mdroth@loki:~$ qom-list /objects/ctx1
thread_id
threaded
id
type

mdroth@loki:~$ qom-get /objects/ctx1.thread_id
6787
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Main Loop Event Sources

Main Loop
IOHandler list

GSources

QEMUTimers

AioContext

...

AioHandlers

Bottom-Halves

Slirp

QEMUTimers
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Event Registration – IOHandlers

Main Loop
IOHandler list

GSources

QEMUTimers

AioContext

...

AioHandlers

Bottom-Halves

 qemu_set_fd_handler(fd, fd_read_fn, fd_write_fn, user_data)
 qemu_set_fd_handler2(fd, read_poll_cb, read_cb, write_cb, user_data)
 set_fd_handler2(ctx, fd, read_poll_cb, read_cb, write_cb, user_data)

 Needs to be thread-safe now (or does it?)

Slirp

QEMUTimers
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Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock
 Defer registration via bottom-halfs

set_fd_handler(fd, …):
  lock(iohandler_list)
  iohandler_list.modify(fd1, …)
  unlock(iohandler_list)

iohandler_dispatch:
  lock(iohandler)
  For iohandler in iohandler_list:
  dispatch(iohandler)
  → set_fd_handler(fd, ...)
  unlock(iohandler)
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Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock, 

but can drop all locks prior to avoid lock-order reversal. Ugly.
 Defer registration via bottom-halfs

lock(tap_mutex)
set_fd_handler(ctx, fd, …):
  gmc_acquire(ctx)
  iohandler_list.modify(fd1, …)
  unlock(iohandler_list)
  gmc_release(ctx)
unlock(tap_mutex)

iohandler_dispatch:
  gmc_acquire(ctx)
  For iohandler in iohandler_list:
  dispatch(iohandler)
  → lock(tap_mutex)
  unlock(iohandler)
  gmc_release(ctx)
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Thread-safe Event Registration/Modification

 Just use a simple mutex!
 Recursive mutex? No.
 g_main_context_acquire – still susceptible to ABBA deadlock
 Defer registration via bottom-halfs
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Questions


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