Introduction to

Virtio Crypto Device

arei.gonglei@huawei.com ..'_532.- HUAWEI
xin.zeng@intel.com intal)
(intel

FOUNDATION

mailto:arei.gonglei@huawei.com
mailto:xin.zeng@intel.com

* QOverview of virtio crypto device

* Virtio crypto device spec

* Introduction to software implementation
* WIP and future plans

Cryptography in cloud

« Used widely
— Wireless, telecom, data center, enterprise systems

« Compute-intensive tasks

- Hardware accelerators support virtualization are
offered with high performance, but
— Limited VF/PF number for VMs
— Different VF drivers needed

THE

L LINUX

FOUNDATION

Why Virtio-crypto?

* Friendly Cloud Characteristic
— Hardware cryptography device agnostic
— Live migration friendly
— Unified device interface and frontend driver as well

* Good scalability
* Low cost In software

THE

L LINUX

FOUNDATION

What's virtio-crypto device

» Avirtual cryptography device under
virtio device framework

» Provides a set of unified operation
interfaces for different cryptography
services

» Contributions from Huawel, Intel, IBM,
RedHat, SUSE, ARM, etc... in
community

THE

L LINUX

FOUNDATION

Spec overview (in RFC)

Device type
Device ID

Device specific feature bits

Device specific configuration

Virtqueue design

Defined cryptography services

Virtio Crypto Device
0x1054

Multiplexing mode support for symmetric service
Indirect descriptors support

Supported maximum queues
Detailed crypto algorithms mask bits
Misc fields such as maximum key length supported

1 control queue for session/control request
1 or multi data queues for service request

Symmetric
Asymmetric

LINUX

FOUNDATION

Virtqueue design

* One control queue
— Session management for symmetric service
— Facilitate control operations for device

* One or more data queues
— Transport channel for crypto service requests

THE

L LINUX

FOUNDATION

Reqguest of control queue

» Consists of two parts
— General header: virtio_crypto_ctrl_header

— Service specific fields
* Fixed size service-specific fields in session mode
 Variable size in multiplexing mode

THE

L LINUX

FOUNDATION

Request of data queue

» Consists of two parts
— General header: virtio_crypto _op header

— Service specific fields
* Fixed size service-specific fields in session mode
 Variable size in multiplexing mode

THE

L LINUX

FOUNDATION

Device specific configuration

struct virtio_crypto_config {
le32 status;
le32 max_dataqueues;

le32 crypto_services; status is used to show whether the device is ready to work or not
/* Detailed algorithms mask */ *max_dataqueues is the maximum number of data virtqueues
le32 cipher_algo_l; exposed by the device.
le32 cipher_algo_h; scrypto_services crypto service offered
le32 hash_algo; cipher_algo_| CIPHER algorithms bits 0-31
le32 mac_algo_|; cipher_algo_h CIPHER algorithms bits 32-63
le32 mac_algo h; e
le32 aead_algo; *max_cipher_key_len is the maximum length of cipher key
/* Maximum length of cipher key in bytes */ supported by the device
le32 max_cipher_key_len; *max_auth_key_len is the maximum length of authenticated key
/* Maximum length of authenticated key in bytes */ supported by the device
le32 max_auth_key_len; *max_size is the maximum size of each crypto request’s content
le32 reserved; supported by the device
le64 max_size;
Iy
THE
L LINUX
FOUNDATION

Symmetric crypto service

* Working modes

— Session mode
+ Efficient for those numerous requests with same context
— Multiplexing mode

* To support stateless mode as well as session mode

« Stateless mode is proposed to reduce cost of session creation for those one-shot requests
+ Controlled by feature bits

« Defined services & operations
— Cipher
* Encryption operation/Decryption operation
— HASH
— MAC
— AEAD

* Encryption operation/Decryption operation
THE

L LINUX

FOUNDATION

Asymmetric crypto service

* No session concept
* Requests are conveyed in data queue

- Defined service operations

— Signature/Verification
+ RSA, DSA, ECDSA

— Encryption/Decryption
- RSA

— Key Generation
- RSA, DSA, EC

— Key Exchange
- DH, ECDH

THE

L LINUX

FOUNDATION

Sequence diagram — Session operations

sd Session operations

Guest: crypto Apps Guest: virtio-cryptg Qemu: virtio-crypto
driver device

T
I
create session(algo, key, auth_key, etc.) !

padding structures of session(Q

padding request of control virtqueue(session...)

[: virtqueue__add_buf(

virtqueue_ kick(Q

handling request of controlq
and creating a session(

setting session identification(

virtqueue_notifyQ

recording session identification(Q

I
CryptoiOperations... [skip]

close session(session id)

L : padding request of control virtqueue(session_id)

virtugue kick(Q

: close session and clear
L resource(session_id)
HE

FOUNDATION

virtgueue notifyQ

A

Sequence diagram — Service operations

sd crypto operations

Guest: crypto App9 Frontend:

virtio-crypto driver

| sending crypto requests() |

Backend:

virtio-crypto devicHq

padding crypto request of dataq()

putting in data virtqueue()
KickQ

Earsinﬂ params from data virtqueue()

alt Symmetric services with session mode/

getting session id and find the
corresponding session()

notify(Q

. |
polling crypto results - asynchronous methond()-

updating crypto results()

invoking crypto backend
implementation to do crypto
operations()

updating used_ring's information()

L

THE

LINL

FOUNDA]

)X

[ION

Software implementation diagram

Crypto APPs

Virtio-crypto PMD

LKCF

f

Virtio-crypto driver

Guest

T

Virtio-crypto device

Cryptodev-vhost
SW Crypto library

Cryptodev backend

Host

A 4

Cryptodev-vhost
implementation

7'y

¥

Accelerators
(SW, HW)

In guest

virtio-crypto user space pmd driver
LKCF based kernel space driver

In host

virtio-crypto device inside QEMU
Cryptodev backend object inside
QEMU which could be:

« Acryptodev builtin backend

« Acryptodev vhost backend

A vhost server implementation(vhost-
user or vhost-kernel)

THE

L LINUX

FOUNDATION

Virtio Cryptodev backend in host

- An user creatable object in QEMU

- Commands: -object/object-add/object_add
- Example: #./gemu-system-x86_64 -object cryptodev-backend,id=cy0

Qemu Object

ﬁ‘ - Easily to be realized with different child
objects

Cryptodev backend

ﬁ ﬁ - Key code:
static const Typelnfo cryptodev_backend_info = {

.name = TYPE_CRYPTODEV_BACKEND,

Cryptodev built-in || Cryptodev vhost oarent = TYPE_OBJECT,
backend backend .instance_size = sizeof(CryptoDevBackend),

.instance_init = cryptodev_backend_instance_init,
.instance_finalize = cryptodev_backend_finalize,
.class_size = sizeof(CryptoDevBackendClass),
.class_init = cryptodev_backend_class_init,
.interfaces = (Interfacelnfo[]) {

{ TYPE_USER_CREATABLE },

{}
}

THE

L LINUX

FOUNDATION

Cryptodev builtin backend

« A child of cryptodev backend
Virtio-crypto device * Interfaced to QEMU crypto APIs
*

v * Requests are consumed by
underlying crypto modules

*Cryptodev builtin backend

gerypto interface - Performance is not ideal for
,,—”;/ \\1\~~\ Symmetrlc service
4~ S~
Qcrypto libgcrypt libnettle AF_ALG Exam P les:
builtin driver driver driver # gemu-system-x86_64 \
driver :) [.]\
libgcrypt libnettle LKCF -object cryptodev-backend-builtin,id=cryptodev0 \

-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodevO \
[...]

THE

L LINUX

FOUNDATION

Cryptodev vhost backend

Virtio-crypto device
*
4

*Cryptodev vhost
backend

s ~
b d
P N

Ve Na

Vhost-crypto- Vhost-crypto-
kernel user

[>

Y
4

Linux kernel

Vhost user
server (DPDK,
ODP or
libvhost)

A child of cryptodev backend

Two kinds of implementations: vhost
kernel client and vhost user client

Vhost user server can be integrated with
DPDK, ODP or libvhost

Better performance, can be used in
production environment

Examples:
gemu-system-x86_64\
[..]\
-chardev socket,id=charcrypto0,path=/your/path/socket0
-object cryptodev-vhost-user,id=cryptodev0 ,chardev=charcryptoO\
-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
[...]

THE

L LINUX

FOUNDATION

WIP and Plans

Spec

More services such as KDF,
PRIMITIVE.

Patches not yet posted

Not yet implemented

Host

QEMU -device virtio-crypto

QEMU -object cryptodev-
backend-builtin (symmetric)

QEMU -object cryptodev-
backend-builtin (asymmetric)

DPDK Vhost-user for virtio-
crypto

Patches merged

. Patches not yet merged

Guest

DPDK virtio-crypto-pmd

LKCF based Virtio-crypto
device driver (symmetric)

LKCF based Virtio-crypto
device driver (asymmetric)

Support more algorithms,
multi data queue, live
migration etc.

L

THE

LINUX

FOUNDATION

Summary

 Virtio crypto device is a viable solution for cloud

 Virtio crypto device spec has been pushed to virtio
community, defined services include:
— Symmetric crypto service
— Asymmetric crypto service

« The groundwork of implementation has been accepted

« The implementation for more service such as asym crypto
service and algorithms are in progress.

THE

L LINUX

FOUNDATION

Questions?

- For more information about virtio-crypto:
— http://gemu-project.org/Features/VirtioCrypto

 For more information about DPDK:
— http://dpdk.orqg/

* For more information about Intel® QAT:
— www.intel.com/quickassist

« Welcome contributions!

THE

LINUX

L FOUNDATION

http://qemu-project.org/Features/VirtioCrypto
http://qemu-project.org/Features/VirtioCrypto
http://qemu-project.org/Features/VirtioCrypto
http://dpdk.org/
http://dpdk.org/
http://www.intel.com/quickassist

