
One Year Later: And There are Still Things
to Improve in Migration!

Red Hat

Juan Quintela

October 22, 2013

Abstract

This talk offers a description of what has changed during the
last year on migration. And what you should expect in the
future.

In search of the Latencies
The never ending story

Red Hat

Juan Quintela

October 22, 2013

Abstract

It looked easy, how long can it take to find downtimes of tens
of seconds!!!

Agenda

1 What have we done?

2 What are the future plans?

3 In Search of the Latencies

4 Focus: migration

5 Anything I have forgot?

6 Questions

Section 1
What have we done?

What have we done?

The last year

Consolidation

autoconverge (Vinod)

rdma (mrhines)

What have we done?

The last year

Consolidation

autoconverge (Vinod)

rdma (mrhines)

What have we done?

The last year

Consolidation

autoconverge (Vinod)

rdma (mrhines)

Section 2
What are the future plans?

What are the future plans?

Bitmap

Patches posted to move from one byte/page to one bit/page

Move to sync bitmaps, not bit a time

What are the future plans?

Bitmap

Patches posted to move from one byte/page to one bit/page

Move to sync bitmaps, not bit a time

What are the future plans?

Sync bitmap

Current code

for (i = 0; i < len ; i++) {
i f (bitmap[i] != 0) {

. . . .
memory region set dirty(section−>mr, addr,

TARGETPAGESIZE ∗ hpratio);
. . . .

}
}

New code

bitmap or(bitmap, kvm bitmap);

What are the future plans?

For SSE/whatever gurus

Is there a simple way of doing

weird ord

1010100011100110 (a)
1100110100011100 (b)

−−−−−−−−−−−−−−−−−−
1110110111111110 (a or b)

And count all the 1’s in b that are not already in a?

What are the future plans?

Do we ever need more optimizations?

Share the bitmap with migration and put a lock

Update bitmap in place

....

Perhaps it is a good idea to meassure first if it is still needed.

What are the future plans?

Do we ever need more optimizations?

Share the bitmap with migration and put a lock

Update bitmap in place

....

Perhaps it is a good idea to meassure first if it is still needed.

What are the future plans?

Do we ever need more optimizations?

Share the bitmap with migration and put a lock

Update bitmap in place

....

Perhaps it is a good idea to meassure first if it is still needed.

What are the future plans?

Do we ever need more optimizations?

Share the bitmap with migration and put a lock

Update bitmap in place

....

Perhaps it is a good idea to meassure first if it is still needed.

What are the future plans?

int indexes?

look at bits

int slow bitmap and(unsigned long ∗dst , const unsigned long ∗bitmap1,
const unsigned long ∗bitmap2, int bits);

What are the future plans?

Let’s do some Math

231 index/size

231 ∗ 4k pages = 8TBmaxguestmemory

231/8 = 256MB bitmap

Really, this is the 1st user of such a big bitmap

What are the future plans?

Let’s do some Math

231 index/size

231 ∗ 4k pages = 8TBmaxguestmemory

231/8 = 256MB bitmap

Really, this is the 1st user of such a big bitmap

What are the future plans?

Let’s do some Math

231 index/size

231 ∗ 4k pages = 8TBmaxguestmemory

231/8 = 256MB bitmap

Really, this is the 1st user of such a big bitmap

What are the future plans?

Let’s do some Math

231 index/size

231 ∗ 4k pages = 8TBmaxguestmemory

231/8 = 256MB bitmap

Really, this is the 1st user of such a big bitmap

What are the future plans?

Post-copy migration

Andrea post patches for the Kernel side

We still need to use that interface on userspace side

What are the future plans?

Post-copy migration

Andrea post patches for the Kernel side

We still need to use that interface on userspace side

What are the future plans?

Fault tolerance

Kemari (orit)

Curling (jules)

micro-checkpointing (mrhines)

COLO (intel)

What are the future plans?

Fault tolerance

Kemari (orit)

Curling (jules)

micro-checkpointing (mrhines)

COLO (intel)

What are the future plans?

Fault tolerance

Kemari (orit)

Curling (jules)

micro-checkpointing (mrhines)

COLO (intel)

What are the future plans?

Fault tolerance

Kemari (orit)

Curling (jules)

micro-checkpointing (mrhines)

COLO (intel)

What are the future plans?

Inter Version Mess

New → Old

Old → New

static checker (amit)

debugging live migration (alex)

What are the future plans?

Inter Version Mess

New → Old

Old → New

static checker (amit)

debugging live migration (alex)

What are the future plans?

Inter Version Mess

New → Old

Old → New

static checker (amit)

debugging live migration (alex)

What are the future plans?

Inter Version Mess

New → Old

Old → New

static checker (amit)

debugging live migration (alex)

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

What are the future plans?

Automatic testing

We have virt-test

And a lot of tests to add

cpu physical memory *

vmstate machinery

subsection stuff

...

Section 3
In Search of the Latencies

In Search of the Latencies

Setup

This testing/search was done on RHEL6

0.12 with lots of backporting

parts of it still relevant to upstream

In Search of the Latencies

Setup

This testing/search was done on RHEL6

0.12 with lots of backporting

parts of it still relevant to upstream

In Search of the Latencies

Setup

This testing/search was done on RHEL6

0.12 with lots of backporting

parts of it still relevant to upstream

In Search of the Latencies

The history

There have been reports of weird latencies that happens during
migration but it always happened:

Lots of vcpus

Lots of RAM

Weird storage

And not reproducible

In Search of the Latencies

The history

There have been reports of weird latencies that happens during
migration but it always happened:

Lots of vcpus

Lots of RAM

Weird storage

And not reproducible

In Search of the Latencies

The history

There have been reports of weird latencies that happens during
migration but it always happened:

Lots of vcpus

Lots of RAM

Weird storage

And not reproducible

In Search of the Latencies

The history

There have been reports of weird latencies that happens during
migration but it always happened:

Lots of vcpus

Lots of RAM

Weird storage

And not reproducible

In Search of the Latencies

There are users and users

And this one was very stubborn, and was able to reproduce it with

1GB RAM

1 VCPU

Just running a program that dirtied memory

And he/she was able to reproduce

In Search of the Latencies

There are users and users

And this one was very stubborn, and was able to reproduce it with

1GB RAM

1 VCPU

Just running a program that dirtied memory

And he/she was able to reproduce

In Search of the Latencies

There are users and users

And this one was very stubborn, and was able to reproduce it with

1GB RAM

1 VCPU

Just running a program that dirtied memory

And he/she was able to reproduce

In Search of the Latencies

There are users and users

And this one was very stubborn, and was able to reproduce it with

1GB RAM

1 VCPU

Just running a program that dirtied memory

And he/she was able to reproduce

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

So, here we go

This looked really, really easy, but (there is always a but)

I was not able to reproduce

After some twisting of arms, I got their network configuration

And ... I would call it broken

it happened when there was congestion

I had to simulate seting network card to 100Mbit/s

...... after waiting 4-5hours for a migration that didn’t ended

In Search of the Latencies

A bit of good luck

After ended a day without luck

During poweroff the problem happens

And it is reproductible

notice that I have the network set to 100mbit

at 1GB freeze don’t exist

In Search of the Latencies

A bit of good luck

After ended a day without luck

During poweroff the problem happens

And it is reproductible

notice that I have the network set to 100mbit

at 1GB freeze don’t exist

In Search of the Latencies

A bit of good luck

After ended a day without luck

During poweroff the problem happens

And it is reproductible

notice that I have the network set to 100mbit

at 1GB freeze don’t exist

In Search of the Latencies

A bit of good luck

After ended a day without luck

During poweroff the problem happens

And it is reproductible

notice that I have the network set to 100mbit

at 1GB freeze don’t exist

In Search of the Latencies

A bit of good luck

After ended a day without luck

During poweroff the problem happens

And it is reproductible

notice that I have the network set to 100mbit

at 1GB freeze don’t exist

In Search of the Latencies

Let’s start

After fixing all the migration paths, nothing really get solved

So, we go tried to look where the time was spent

And there is no trace that shows how long input handlers take
to run

or how long a vcpu takes between an exit and a re-enter

(remember we have 1VCPU and 1GB RAM, no overcommit of
anything)

In Search of the Latencies

Let’s start

After fixing all the migration paths, nothing really get solved

So, we go tried to look where the time was spent

And there is no trace that shows how long input handlers take
to run

or how long a vcpu takes between an exit and a re-enter

(remember we have 1VCPU and 1GB RAM, no overcommit of
anything)

In Search of the Latencies

Let’s start

After fixing all the migration paths, nothing really get solved

So, we go tried to look where the time was spent

And there is no trace that shows how long input handlers take
to run

or how long a vcpu takes between an exit and a re-enter

(remember we have 1VCPU and 1GB RAM, no overcommit of
anything)

In Search of the Latencies

Let’s start

After fixing all the migration paths, nothing really get solved

So, we go tried to look where the time was spent

And there is no trace that shows how long input handlers take
to run

or how long a vcpu takes between an exit and a re-enter

(remember we have 1VCPU and 1GB RAM, no overcommit of
anything)

In Search of the Latencies

Instrumentation? What is that?
I ended with something like this.

printf

struct timespec start , end;
uint64 t t0;

clock gettime(CLOCKREALTIME, &start);
foo();
clock gettime(CLOCKREALTIME, &end);
t0 = (end. tv sec − start . tv sec) ∗ 1000

+ (end.tv nsec − start . tv nsec)/ 1000000;
i f (t0 > 100) {
printf(”foo: %lu ms\n”, t0);
}
g();
clock gettime(CLOCKREALTIME, &end);
t0 = (end. tv sec − start . tv sec) ∗ 1000

+ (end.tv nsec − start . tv nsec)/ 1000000;
i f (t0 > 100) {
printf(”bar: %lu ms\n”, t0);
}

In Search of the Latencies

And there are time spent on io handlers

It could take more than 1 second during migration

They can block the io thread for more than 1second during
migration

They block the io thread for more than than 150ms out of
migration

In Search of the Latencies

And there are time spent on io handlers

It could take more than 1 second during migration

They can block the io thread for more than 1second during
migration

They block the io thread for more than than 150ms out of
migration

In Search of the Latencies

Non migration case

On one hand why io handlers took so long

and we go back to migration

In Search of the Latencies

Non migration case

On one hand why io handlers took so long

and we go back to migration

In Search of the Latencies

After hunting lots and lots

qemu aio wait() has a select() without timeout

and NFS over a saturated 100Mbit takes a long time

In Search of the Latencies

After hunting lots and lots

qemu aio wait() has a select() without timeout

and NFS over a saturated 100Mbit takes a long time

In Search of the Latencies

Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow

In Search of the Latencies

Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow

In Search of the Latencies

Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow

In Search of the Latencies

Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow

In Search of the Latencies

Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow

In Search of the Latencies

1st additions

Just io read

qemu mutex lock iothread();
i f (ret > 0) {

IOHandlerRecord ∗pioh;
+struct timespec start , end;
+uint64 t t0;

QLISTFOREACH(ioh , &io handlers , next) {
i f (!ioh−>deleted && ioh−>fd read &&FD ISSET(ioh−>fd , &rfds)) {

+clock gettime(CLOCKREALTIME, &start);
ioh−>fd read(ioh−>opaque);

+clock gettime(CLOCKREALTIME, &end);
+t0 = (end. tv sec − start . tv sec) ∗ 1000
+ + (end.tv nsec − start . tv nsec)/ 1000000;
+i f (t0 > 100) {
+ printf(”io read : %lu ms\n”, t0);
+}
+

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....

In Search of the Latencies

A plot twist

vbho 2: t0 358 t1 358 ms 16 num writes

This is virtio block handle other for you.

problem are VIRTIO BLK T OUT and OTHER

In Search of the Latencies

A plot twist

vbho 2: t0 358 t1 358 ms 16 num writes

This is virtio block handle other for you.

problem are VIRTIO BLK T OUT and OTHER

In Search of the Latencies

A plot twist

vbho 2: t0 358 t1 358 ms 16 num writes

This is virtio block handle other for you.

problem are VIRTIO BLK T OUT and OTHER

In Search of the Latencies

virtio-net

static void virtio net handle tx bh(VirtIODevice ∗vdev, VirtQueue ∗vq)
{

VirtIONet ∗n =VIRTIONET(vdev);
VirtIONetQueue ∗q =&n−>vqs[vq2q(virtio get queue index(vq))];

i f (unlikely(q−>tx waiting)) {
return ;

}
q−>tx waiting = 1;
/∗ This happens when device was stopped but VCPU wasn't . ∗/
i f (!vdev−>vm running) {

return ;
}
virtio queue set notification(vq, 0);
qemu bh schedule(q−>tx bh);

}

In Search of the Latencies

virtio-blk

static void virtio blk dma restart bh(void ∗opaque)
{

VirtIOBlock ∗s = opaque;
VirtIOBlockReq ∗req = s−>rq;
MultiReqBuffer mrb = {

.num writes = 0,
};

qemu bh delete(s−>bh);
s−>bh =NULL;

s−>rq =NULL;

while (req) {
virtio blk handle request(req, &mrb);
req = req−>next;

}

virtio submit multiwrite(s−>bs, &mrb);
}

Section 4
Focus: migration

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And

Guess where I am stuck right now

Focus: migration

This is where things are?

io_read: 13 0x7ffff7e1da40

qaw 2: 9010 ms

qaw 3: 10011 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 10011 ms

qaw 3: 11012 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 11012 ms

qaw 3: 12013 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 12013 ms

qaw 3: 13014 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 13014 ms

qaw 3: 14015 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 14015 ms

qaw 3: 15017 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 15017 ms

qaw 3: 16018 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 16018 ms

qaw 3: 17019 ms rfd 1 wfd 0

Focus: migration

Back to the user

Get back to iterative stage when taking so long

Problem fixed, right?

No, it was enough for getting ping to answer, but not for
nothing that runs on userspace

So we ended puting a limit on how soon we can get back to
the completion stage

Focus: migration

Back to the user

Get back to iterative stage when taking so long

Problem fixed, right?

No, it was enough for getting ping to answer, but not for
nothing that runs on userspace

So we ended puting a limit on how soon we can get back to
the completion stage

Focus: migration

Back to the user

Get back to iterative stage when taking so long

Problem fixed, right?

No, it was enough for getting ping to answer, but not for
nothing that runs on userspace

So we ended puting a limit on how soon we can get back to
the completion stage

Focus: migration

Back to the user

Get back to iterative stage when taking so long

Problem fixed, right?

No, it was enough for getting ping to answer, but not for
nothing that runs on userspace

So we ended puting a limit on how soon we can get back to
the completion stage

Section 5
Anything I have forgot?

Section 6
Questions

The end.
Thanks for listening.

	What have we done?
	What are the future plans?
	In Search of the Latencies
	Focus: migration
	Anything I have forgot?
	Questions

