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What are the future plans?

Sync bitmap

Current code

for ( i = 0; i < len ; i++) {
i f (bitmap[ i ] != 0) {

. . . .
memory region set dirty(section−>mr, addr,

TARGETPAGESIZE ∗ hpratio);
. . . .

}
}

New code

bitmap or(bitmap, kvm bitmap);



What are the future plans?

For SSE/whatever gurus

Is there a simple way of doing

weird ord

1010100011100110 (a)
1100110100011100 (b)

−−−−−−−−−−−−−−−−−−
1110110111111110 (a or b)

And count all the 1’s in b that are not already in a?
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What are the future plans?

int indexes?

look at bits

int slow bitmap and(unsigned long ∗dst , const unsigned long ∗bitmap1,
const unsigned long ∗bitmap2, int bits );
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Instrumentation? What is that?
I ended with something like this.

printf

struct timespec start , end;
uint64 t t0;

clock gettime(CLOCKREALTIME, &start );
foo();
clock gettime(CLOCKREALTIME, &end);
t0 = (end. tv sec − start . tv sec) ∗ 1000

+ (end.tv nsec − start . tv nsec)/ 1000000;
i f (t0 > 100) {
printf(”foo: %lu ms\n”, t0);
}
g();
clock gettime(CLOCKREALTIME, &end);
t0 = (end. tv sec − start . tv sec) ∗ 1000

+ (end.tv nsec − start . tv nsec)/ 1000000;
i f (t0 > 100) {
printf(”bar: %lu ms\n”, t0);
}
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It could take more than 1 second during migration

They can block the io thread for more than 1second during
migration

They block the io thread for more than than 150ms out of
migration
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Time to work

You can’t debug performance problems with gdb, as if you
stop it to see what function is taking too much, you are
changing times too much

so we are back to the old time of printf

putting printf’s all around qemu takes forever

so, adding printf’s, see where the time is being spent, and
then instrument that function.

This works, but it is slow
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1st additions

Just io read

qemu mutex lock iothread();
i f (ret > 0) {

IOHandlerRecord ∗pioh;
+struct timespec start , end;
+uint64 t t0;

QLISTFOREACH(ioh , &io handlers , next) {
i f (!ioh−>deleted && ioh−>fd read &&FD ISSET(ioh−>fd , &rfds)) {

+clock gettime(CLOCKREALTIME, &start );
ioh−>fd read(ioh−>opaque);

+clock gettime(CLOCKREALTIME, &end);
+t0 = (end. tv sec − start . tv sec) ∗ 1000
+ + (end.tv nsec − start . tv nsec)/ 1000000;
+i f (t0 > 100) {
+ printf(”io read : %lu ms\n”, t0);
+}
+
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An unexpected guest

pun intended

Some of the iohandlers take more than 100ms

we only have pointers at that point, getting names gets
interesting, but I digress

fd read: 0x7ffff7df2390 358 ms

a read io handler is taking 358ms. I have seen so much as
800ms. Notice that this is without migration, without playing
with network characteristics, ...

Investigation continues

vphnr: 3 358 ms 0x7ffff915e440

this is virtio pci host notifier read for you

/me starts blamethrower, clearly virtio net stuff

just one last check....
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virtio-net

static void virtio net handle tx bh(VirtIODevice ∗vdev, VirtQueue ∗vq)
{

VirtIONet ∗n =VIRTIONET(vdev);
VirtIONetQueue ∗q =&n−>vqs[vq2q(virtio get queue index(vq))];

i f (unlikely(q−>tx waiting)) {
return ;

}
q−>tx waiting = 1;
/∗ This happens when device was stopped but VCPU wasn't . ∗/
i f (!vdev−>vm running) {

return ;
}
virtio queue set notification(vq, 0);
qemu bh schedule(q−>tx bh);

}



In Search of the Latencies

virtio-blk

static void virtio blk dma restart bh(void ∗opaque)
{

VirtIOBlock ∗s = opaque;
VirtIOBlockReq ∗req = s−>rq;
MultiReqBuffer mrb = {

.num writes = 0,
};

qemu bh delete(s−>bh);
s−>bh =NULL;

s−>rq =NULL;

while (req) {
virtio blk handle request(req, &mrb);
req = req−>next;

}

virtio submit multiwrite(s−>bs, &mrb);
}
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Our problem was with migration

This was more complicated that it looks, but at the end,
investigations ended with:

migration calls bdrv flush all()

bdrv flush all() calls qemu aio flush()

qemu aio flush() calls qemu aio wait()

qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds
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qemu aio wait() calls select(...., NULL)

from the iothread

I have meassured that select() to take 40-50 seconds.

yes, unit is right, seconds, not milliseconds



Focus: migration

Proposal: Put a timeout in the select

For migration (notice only migration), put a timeout in the
select, if we get out through the timeout, just got back to the
iterative stage

For upstream: we need to put the timeout always

And audit all the callers

And probably add a coroutine

And problably we need a new toplevel state: stopped waiting
for IO to finish

And ....

Guess where I am stuck right now
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For upstream: we need to put the timeout always
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Focus: migration

This is where things are?

io_read: 13 0x7ffff7e1da40

qaw 2: 9010 ms

qaw 3: 10011 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 10011 ms

qaw 3: 11012 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 11012 ms

qaw 3: 12013 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 12013 ms

qaw 3: 13014 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 13014 ms

qaw 3: 14015 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 14015 ms

qaw 3: 15017 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 15017 ms

qaw 3: 16018 ms rfd 1 wfd 0

io_read: 13 0x7ffff7e1da40

qaw 2: 16018 ms

qaw 3: 17019 ms rfd 1 wfd 0



Focus: migration

Back to the user

Get back to iterative stage when taking so long

Problem fixed, right?

No, it was enough for getting ping to answer, but not for
nothing that runs on userspace

So we ended puting a limit on how soon we can get back to
the completion stage
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Section 5
Anything I have forgot?



Section 6
Questions



The end.
Thanks for listening.
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