
Lessons learned from
OSV

Avi Kivity, Glauber Costa
Cloudius Systems

Introduction to OSV

Why C++ for systems programming?
Examples

Agenda

QEMU and OSV requirements

OSV

Glauber Costa
KVM, Containers, Xen

Nadav Har’EL,
Nested KVM

Pekka Enberg,
kvm, jvm, slab

Dor Laor, Former kvm
project mngr

Avi Kivity KVM
originator

 Or Cohen Dmitry Fleytman Ronen Narkis Guy Zana hch

Typical Cloud Stack

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

A Historical Anomaly

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

provides protection and abstraction

provides protection and abstraction

provides protection and abstraction

Too Many Layers, Too Little Value

Property/Component

Hardware abstraction

Isolation

Resource virtualization

Backward compatibility

Security

Memory management

I/O stack

Configuration

VMM OS runtime

Du
pli
ca
tio
n

The new Cloud Stack - OSv

Hardware

Hypervisor

Core

JVM

Application
Server

Your AppSingle
Process

Kernel
space only

Linked to
existing
JVMs

App sees
no change

The new Cloud Stack - OSv

Memory Huge pages, Heap vs Sys

I/O Zero copy, full aio, batching

Scheduling Lock free, low latency

Tuning Out of the box, auto

CPU Low cost ctx, Direct
signals,..

Van Jacobson == TCP/IP

Common kernel network stack

Leads to servo-loop:

Van Jacobson == TCP/IP

Net Channel design:

Dynamic heap, sharing is good

JVM Memory System
memory

Lend
memory

● 64-bit x86
○ KVM - running like a bat out of hell
○ Xen HVM - running (still slow :-()
○ VMware - planned in 2 months

● 64-bit ARM - planned
● Others - patches welcome

Architecture ports

Management

● Runs:
○ Java, C, JRuby, Scala, Groovy, Clojure, JavaScript

● Outperforms Linux:
○ SpecJVM, MemCacheD, Cassandra, TCP/IP

● 400% better w/ scheduler micro-benchmark
● < 1sec boot time
● ZFS filesystem
● Huge pages from the very beginning

Status

Milestones

Formation,
12/2012

Seed, 02/2013

KVM,
networking,
04/2013

Outperform
Other OSs,
07/2013

OSS launch,
09/2013

limited GA,
Beginning
2014

First OEM
revenue,
Q1/2015

OSS launch,
Memcached
outperform by 40%,
9/2013

Two languages called C++

1. Strongly typed object oriented language
specialized in leveraging synergies within
business process for on demand needs of
global companies in a dynamic paradigm
shift

Two languages called C++

2. A macro language for generating C

Two languages called C++

2. A macro language for generating C

● An elaborate macro language
○ Reduce boilerplate
○ Reduce C macros
○ More libraries, reuse
○ Less duplication

● Let the compiler write your C code

Scoped locking

Performance and tracing

Atomic allocation & initialization

Allocate memory and initialize it in one step
● No need to track the size
● No error checking between steps

Containers

● vector<foo> - growable array
● unordered_map<key, value> - growable

hash table
● list<bar> - doubly linked list
● set<whatever> - sorted balanced tree

Reduce the role of laziness in determining
key data structures

templates - enforcing concepts at
compile time

rcu_ptr<vector<device>> device_list;

// update:
device_list.assign(new_device_list);

// read:
auto list = device_list.read();

Reference counted objects

shared_ptr<device> - fully automatic
reference counting

intrusive_ptr<device> - full manual control

Generic callbacks

function<void (int level)> irq_handler;

function<u64 (hw_addr addr, unsigned size)>

 read_callback;

irq_handler = my_irq_handler;

read_callback = bind(this, &my_device::read);

Generic callbacks

function<void (int level)> irq_handler;

function<u64 (hw_addr addr, unsigned size)>

 read_callback;

irq_handler = my_irq_handler;

read_callback = bind(this, &my_device::read);

Signals and slots

signal <void ()> system_reset;

...

system_reset.connect([&] { reset_bar0(); });

…

system_reset();

Conclusions

● OSV experience shows modern system
programming is made easier in C++

● Boilerplate (and silly mistakes) reduced
● Easy, fast to use and build frameworks
● More fun too!
● Lessons applicable to QEMU

Resources

http://osv.io

https://github.com/cloudius-systems/osv

@CloudiusSystems

 osv-dev@googlegroups.com

 #osv on FreeNode

http://osv.io
http://osv.io
https://github.com/cloudius-systems/osv
https://github.com/cloudius-systems/osv
mailto:osv-dev@googlegroups.com

