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A Historical Anomaly
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Too Many Layers, Too Little Value
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The new Cloud Stack - OSv
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The new Cloud Stack - OSv

Memory Huge pages, Heap vs Sys

I/O Zero copy, full aio, batching 

Scheduling Lock free, low latency

Tuning Out of the box, auto

CPU Low cost ctx, Direct 
signals,..



Van Jacobson == TCP/IP

Common kernel network stack

Leads to servo-loop:



Van Jacobson == TCP/IP

Net Channel design:



Dynamic heap, sharing is good
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● 64-bit x86
○ KVM - running like a bat out of hell
○ Xen HVM - running (still slow :-( )
○ VMware - planned in 2 months

● 64-bit ARM - planned
● Others - patches welcome

Architecture ports



Management



● Runs:
○ Java, C, JRuby, Scala, Groovy, Clojure, JavaScript

● Outperforms Linux:
○ SpecJVM, MemCacheD, Cassandra, TCP/IP

● 400% better w/ scheduler micro-benchmark
● < 1sec boot time
● ZFS filesystem
● Huge pages from the very beginning

Status



Milestones

Formation, 
12/2012

Seed, 02/2013

KVM, 
networking, 
04/2013

Outperform 
Other OSs, 
07/2013

OSS launch, 
09/2013

limited GA, 
Beginning 
2014

First OEM 
revenue, 
Q1/2015

OSS launch, 
Memcached 
outperform by 40%, 
9/2013



Two languages called C++

1. Strongly typed object oriented language 
specialized in leveraging synergies within 
business process for on demand needs of 
global companies in a dynamic paradigm 
shift



Two languages called C++

2. A macro language for generating C



Two languages called C++

2. A macro language for generating C

● An elaborate macro language 
○ Reduce boilerplate
○ Reduce C macros
○ More libraries, reuse
○ Less duplication

● Let the compiler write your C code



Scoped locking



Performance and tracing



Atomic allocation & initialization

Allocate memory and initialize it in one step
● No need to track the size
● No error checking between steps



Containers

● vector<foo> - growable array
● unordered_map<key, value> - growable 

hash table
● list<bar> - doubly linked list
● set<whatever> - sorted balanced tree

Reduce the role of laziness in determining 
key data structures



templates - enforcing concepts at 
compile time

rcu_ptr<vector<device>> device_list;

// update:
device_list.assign(new_device_list);

// read:
auto list = device_list.read();



Reference counted objects

shared_ptr<device> - fully automatic 
reference counting

intrusive_ptr<device> - full manual control



Generic callbacks

function<void (int level)> irq_handler;

function<u64 (hw_addr addr, unsigned size)>

    read_callback;

irq_handler = my_irq_handler;

read_callback = bind(this, &my_device::read);
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Signals and slots

signal <void ()> system_reset;

...

system_reset.connect([&] { reset_bar0(); });

…

system_reset();



Conclusions

● OSV experience shows modern system 
programming is made easier in C++

● Boilerplate (and silly mistakes) reduced
● Easy, fast to use and build frameworks
● More fun too!
● Lessons applicable to QEMU



Resources

http://osv.io

https://github.com/cloudius-systems/osv

@CloudiusSystems
 

    osv-dev@googlegroups.com

    #osv on FreeNode
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