
Block Layer Status Report

Red Hat

Kevin Wolf <kwolf@redhat.com>
Stefan Hajnoczi <stefanha@redhat.com>

KVM Forum 2013



Block layer introduction

Kevin and Stefan maintain the QEMU block layer

Block layer enables virtual disk, CD-ROM, floppy drives

11 image formats (qcow2, vmdk, vhdx, etc)

Native formats: raw, qcow2

9 protocols (file, Gluster, iSCSI, etc)

This presentation covers current work



Part I
Image formats



qcow2: Data deduplication

Detect clusters with identical data
⇒ store them only once

Challenge:

Can’t keep hashes for all clusters in memory
Disk is slow

Benôıt Canet will talk more about this



qcow2: Corruption prevention

Additional safety measure to protect metadata...

...in already corrupted image files

...against qemu bugs

Offsets of most metadata structures are in memory

Attempt to overwrite metadata that shouldn’t be?

Fail the request without overwriting metadata
Mark the image corrupted
Make it read-only until after qemu-img check -r all



qcow2: Performance (Copy on Write)

Clusters

0 64k 128k 192k

Write request 1

Write request 2

Write request 3

Write request 4

Data written by guest
Copy on Write area
Unnecessary COW overhead

For simple images, COW is the only relevant overhead

Delayed COW can fix it
Near-raw performance even for allocations



qcow2: Performance (Internal COW)

Internal snapshots, compression

Internal COW is extremely expensive

Need two disk flushes per request for ordering metadata
updates

Lazy refcounts can mitigate it

10000

20000

30000

40000

base external
snapshot

internal
snapshot

int. sn.
lazy ref.

rewrite

Write throughput in kB/s during

sequential cluster allocation;

256k blocks; cache=none (iozone)



qcow2: Journalling

We considered introducing a journal for

Delayed COW
Would allow to delay across flushes

cache=writethrough flushes after each request!

...but good enough without a journal

Improve internal COW performance

...but lazy refcounts can mitigate it

No more cluster leaks on crashes and errors

Conclusion: Perhaps later



Non-native image formats

VHDX read/write support:

Journalling support
Creating VHDX images

VMDK support for newer versions



Part II
Block device configuration



Driver-specific options

Traditionally: Options encoded in “filename” string

Only for protocols, not for formats
No way to configure backing files
Characters with special meaning (colon in filename?)

Examples:

nbd:localhost:1234

fat:floppy:rw:/tmp/vvfat dir

blkdebug:/tmp/blkdebug.cfg:/tmp/test.qcow2

New: Separate, driver-specific options

-drive file.driver=nbd,file.host=localhost

-drive file=test.qcow2,lazy-refcounts=on



drive add

HMP drive add isn’t suitable for QMP:

Parsing strings instead of structured JSON data

Device configuration mixed with backend configuration

Convenience magic gets in the way

e.g. automatic deletion of backend after unplug



blockdev-add

Introduce a separate blockdev-add QMP command:

In qemu.git master now

Configures only backend aspects

Command line: Exact mapping of JSON structure

Doesn’t provide copy-on-read and I/O throttling

Should become block filters

Network protocol support still to be done



blockdev-add on the JSON level

{ "execute": "blockdev-add",

"arguments": {

"options": {

"driver": "qcow2",

"id": "my_disk",

"discard": "unmap",

"cache": { "direct": true,

"writeback": true },

"file": { "driver": "file",

"filename": "/tmp/test.qcow2" },

"backing": { "driver": "qcow2",

"file": { "driver": "file",

"filename": "/dev/fdset/4" } } } } }



Giving users full control

Flexibility to create complex structures

Block filters
NBD server
User access to any node in the graph

virtio-blk device snap.qcow2 quorum filter

base1

base2

base3

backup

Backup job

I/O throttling

NBD server

Markus Armbruster and Kevin Wolf will talk more about this



Part III
Dataplane



I/O emulation scalability bottleneck

I/O emulation is bottlenecked on the Big QEMU Lock

SMP host & guest results in lock contention

Amdahl’s Law: only parallel parts can scale



Getting around the bottleneck today

Dedicated thread for raw image file I/O

Duplicates QEMU code to achieve thread-safety

Does not support image formats, I/O throttling, block jobs,
NBD exports, monitor commands, hot unplug



Solving the bottleneck properly

User-configurable number of iothreads

Devices can be bound to iothreads

Introduces fine-grained locking into QEMU

Block layer features work in a multi-iothread world



Current work

Per-AioContext timers by Alex Bligh

Virtio thread-safe memory API conversion by Paolo Bonzini

Thread-safe BH APIs by Ping Fan Liu

AioContext acquire/release by Stefan Hajnoczi

In other words, infrastructure is being put in place



Future work

Management APIs for defining iothreads (see Mike Roth’s
QContext presentation)

Performance investigation to find best configurations

Converting devices beyond virtio-blk



Part IV
Image fleecing



Point-in-time snapshots

drive-backup command copies out contents of a drive

Data is copied out before guest modifications

No cleanup required unlike deleting external snapshot

Use case: backing up disk while guest is running

Available in QEMU 1.6, by Dietmar Maurer and Stefan
Hajnoczi



Image fleecing

Point-in-time snapshot as read-only NBD export

Use qcow2 backing file feature instead of copying entire disk

Throw away qcow2 file when NBD export is destroyed

Use case: backup applications, virus scanners, etc

Patches being worked on by Fam Zheng and Ian Main



Incremental backup

Not yet implemented, looking for requirements & developers

Only copy blocks that changed since last snapshot

Maintain a persistent dirty bitmap

Support for storage array, file system, and volume manager
offload

Implicit API: write out dirty blocks over NBD

Explicit API: fetch dirty block bitmap

Use case: efficient periodic backups



Image syncing

Extension of dirty bitmap idea, not implemented

Dirty bitmap only supports one user at a time

Per-block revision counter

Multiple users can synchronize the image or copy dirty blocks

Use case: opportunistic replication, multi-user incremental
backup



Part V
qemu-img map



qemu-img map

New bdrv get block status() API by Paolo Bonzini

Allocation, LBA mapping, and zero status information exposed

New qemu-img map command for external programs

Allocation information also used for sparse block migration,
work by Peter Lieven



The end.
Thanks for listening.


	Image formats
	Block device configuration
	Dataplane
	Image fleecing
	qemu-img map

