
  

KVM Forum 2013

How closely do we model real hardware in 
QEMU?

Anthony Liguori <anthony@codemonkey.ws>



  

Why?

 QEMU is a functional simulator

 Learn from the past, avoid repeating mistakes

 Informed decisions about deviating

 Anticipate future emulation requirements



  

Overview: -M pc

 ->machine() function creates a tangle of things
 Initial memory layout
 IRQ routing tables
 i440fx (piix gets automagically created)
 ISA bus and assortment of devices
 PIIX3 IDE and USB functions
 Default devices

 The world is flat after this point



  

Overview: -M pc 

Comparison to modern hardware
 

● Northbridge external to processors

● Southbridge separate from northbridge

● Local APIC could be external

● Did support SMP

● Had very limited support for RAM (1GB)

Overview
 

● I440fx consists of PMC and PHB

● PIIX4 is the Super I/O chip

● Integrated IDE controller

● PIIX4 adds USB controller



  

Flows: RAM read from CPU0

read(0x0100 0000)
 

● Request is sent to ICB destined for
 I440FX

● PMC checks against PCI window and
 PAM window and then dispatches to
 RAM

Observations

● We get this right!



  

Flows: Write to E1000 bar0

write(0xE000 xxxx)
 

● Request goes to PCI bus

● Device uses Base Address Registers 
 to determine if it handles the request

● Device asserts #DEVSEL to indicate
 that it handles request

Observations

● We can't check BARs in parallel

● We maintain a dispatch table

● The PHB has many opportunities to 
 alter request



  

Aside: device endianness

Endianness does not exist in hardware!

PCI Host Controller

E1000

D0D1D2D31 D30 …..........................

So why do we have device_endianness?



  

Bugs, bugs, everywhere

 X86 has two address spaces: memory and IO

 Most architectures just have one: memory

 PCI has two address spaces

 Non-x86 PCI Host Controllers reserve a range 
of memory space for PCI IO memory



  

PCI IO

PCI Host Controller
if (in_range(addr, io_window,
             io_window_size)) {
    send_pci_req(io, addr, size);
} else {
    send_pci_req(mem, addr,
                 size);
}

PCI Bus

Memory read/write



  

Linear dispatch

 Register a memory region for I/O window
 Call cpu_outb/inb
 And byte swap   ←  BUG

 Each level of endian swapping cancels a 
previous

 All users need auditing and device_endianness 
should die



  

Flows: Opt. ROM read from CPU0

read(0x000a 0000)
 

● Request is sent to ICB destined for
 I440FX

● PMC checks against PAM table
● Separate bits for read vs. Write
● Either redirect to RAM or ROM via 

ISA bus

Observations

● This would be very slow to emulate
 correctly under QEMU

● Recent kernels allow us to partially
 emulate this with KVM



  

Flows: LAPIC from CPU0

read(0xFEC0 00xx)
 

● Modern CPUs simply implement
 LAPIC functionality as part of the
 core

Observations
 

● Nothing other than CPU0 can read or
 write to CPU0's local APIC

● Devices cannot DMA to local APIC



  

Flows: Read PHB configuration

outb 0xcf8
inb 0xcfa
 

● PCI configuration requests are 
 decoded in the i440fx

● devfn = 0 is handled specially

Observations

● We treat all PCI slots as equal

● We create separate a separate i440fx 
 device that lives as a child of the 
 i440fx-pcihost device

● This lives in piix.c oddly enough



  

Flows: Read IDE PCI config

outb 0xcf8
inb 0xcfa
 

● PCI configuration requests are 
 decoded in the i440fx

● Request goes to PCI bus

● PIIX4 responds on behalf of 
 embedded IDE controller

Observations

● We don't model functions vs. slots

● This works okay for simple and 
 mostly discrete functions

● This fails for sophisticated devices 
 that provide virtual functions



  

Flows: DMA from E1000

DMA to 0x0010 0000
 

● Request goes to PCI bus

● PCI bus routes through the PMC

Observations

● PHB can remap requests

● More complex topologies are 
 possible



  

Flows: Read to RTC

outb 0x70
 

● Request goes to PCI bus

● PIIX4 claims request

● RTC handles and responds

Observations

● Request never enters ISA bus

● Very special treatment of PIIX4 
 devices



  

Flows: Write to serial port

outb 0x3f8
 

● Request goes to PCI bus

● If no device claims the request, it is 
 directed to the first PCI-to-ISA bridge

● Subtractive decoding

● Request is placed on ISA bus

● Any device can handle it (or not)

Observations

● ISA flows through PCI!

● ISA != Super I/O devices

● ISA really isn't a useful bus



  

Conclusions

 I/O flows are hierarchical
 We emulate them with flat dispatch

 We get endianness very wrong

 We will eventually need to fix these things



  

Questions?

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

