
Block device configuration done right

Markus Armbruster <armbru@redhat.com>
Kevin Wolf <kwolf@redhat.com>
KVM Forum 2013



Part I

What’s wrong with it?



What’s a block device in QEMU?

Consists of

frontend (guest part, a.k.a. device model)
virtual IDE disk, SD card, . . .

backend (host part)
image file, logical volume, remote image, . . .



Beginnings: all I want is an image file

How hard can this be?

-hda FILENAME -hdb FILENAME

-hdc FILENAME -hdd FILENAME

-cdrom FILENAME -mtdblock FILENAME

-sd FILENAME -pflash FILENAME

-fda FILENAME -fdb FILENAME

As many options as block devices



Surprise: one size doesn’t fit all

Oops, I need to control geometry of hda!

Easy, just add another option:
-hdachs C,H,S

Second thoughts, add one with parameters:
-drive if=ide,index=0,cyls=C,heads=H,. . .



Frontend-specific configuration

Oops, I need to control virtio-blk’s PCI address!

Easy, just add a parameter for it:
-drive if=virtio,addr=DEVFN,. . .

Second thoughts:

addr valid only with if=virtio

Frontends have many more parameters. . .

Bake them all into block layer? No way!



Separate frontend & backend configuration

-drive configures both frontend and backend
Problem: bad at configuring frontends

Solution:

Create a way to configure just a backend
-drive if=none,id=drive0,. . .

Then configure the frontend the usual way
-device ide-hd,drive=drive0,. . .



Backend configuration

-drive designed for “format over protocol”

Can do:

Select a format driver (parameter format)

Configure a protocol (parameter file)

Generic parameters (remaining ones)

We’ll see: bad at configuring backends, too!



Example: raw over file

-drive if=none,format=raw,file=foo.img

raw file:foo.img

Format raw over protocol file (both block drivers)
Format raw does effectively nothing
It’s just for filling “format over protocol” mold



Example: raw over nbd

if=none,format=raw,file=nbd:cloud9:1234

raw nbd:cloud9:1234

Block layer & protocol driver parse value of file
Ad hoc syntaxes abound; anathema to QMP
Great fun: users putting colons in filenames



Example: qcow2 over file

if=none,format=qcow2,file=bar.qcow2

qcow2

file:bar.qcow2

file:bar.img

backing config

qcow2 config

Can’t control qcow2 parameters
Can’t control backing protocol



A use case for full protocol control

Idea:

Run QEMU with minimal privileges

Pass it file descriptors, not filenames

Required to get best mileage out of SELinux & NFS

But: can’t pass a backing fd!
(Libvirt is not amused)



Example: raw over blkdebug over . . .

if=none,format=raw,file=blkdebug:dbg.cfg:. . .

raw blkdebug:dbg.cfg . . .

Protocol recursion: “. . . ” parsed as protocol
blkdebug acts as filter



Example: I/O throttling done right

Want filter (now: baked into block layer)
Want to apply anywhere (now: only at root)

throttle qcow2

file:foo.qcow2

nbd:cloud9:1234

qcow2

file:foo.qcow2

throttle nbd:cloud9:1234

More than just “format over protocol”



Example: Image fleecing

frontend quorum

. . .

. . .

. . .

snap.qcow2

throttle

NBD server

copy job

Reconfiguration during use
This ain’t trees anymore!



Putting it all together

Got a (mostly treeish) graph to deal with

Nodes are block driver instances, frontends,
backends, block jobs, . . .

Need full control over every node

QMP is JSON, can do graph

Command line is going to be awkward

Far out: fit into QOM



Part II

Implementing the new way



What do I need to implement?

“blockdev” has become a massive project to fix
everything in the block layer

Three years talk, but nothing happened

Need to break it up into manageable pieces

Start somewhere



Section 1

The command line



The command line

Get rid of options in “filenames”

Instead allow driver-specific options in -drive

Old:
-drive file=nbd:localhost:10809

New:
-drive file.driver=nbd,file.host=localhost

file.port has a default value now



The command line

Colons and file names

Old:
-drive file=test:a.qcow2

Parsed as protocol test with argument a.qcow2

No way to escape the colon

Similar trouble with colons in options

New:
-drive file.filename=test:a.qcow2

Works fine; driver-specific options are not parsed



The command line

Allow options for format drivers

Format drivers never see the filename

No evil filename parsing

Can’t provide options

The new syntax can provide options:
-drive file=test.qcow2,lazy-refcounts=on



The command line

Options for backing files

Backing file name/format taken from qcow2 header

libvirt would rather pass file descriptors

No control over other options:
You always get the qemu defaults

We can allow passing options now:
-drive file=test.qcow2,\
backing.file.filename=/dev/fdset/1

Still to be done for many options



Section 2

QMP



QMP

What’s the goal of blockdev-add?

We need a QMP command to hotplug block devices
that...

...takes structured data instead of a string

...configures only the backend

...creates block devices without any magic
attached

e.g. don’t automatically disappear when the frontend
is unplugged



QMP

What does it look like?

Minimal example:

{ "execute": "blockdev-add",

"arguments": { "options" : {

"id": "my_disk",

"driver": "qcow2",

"file": { "driver": "file",

"filename": "test.qcow2" } } } }

-drive mapped to JSON
But JSON schema restricts allowed options

Only backend options
Only long-term supportable options



QMP

A more interesting example

Override the backing file with a file descriptor:

{ "execute": "blockdev-add",

"arguments": {

"options": {

"driver": "qcow2",

"id": "my_disk",

"discard": "unmap",

"cache": { "direct": true,

"writeback": true },

"file": { "driver": "file",

"filename": "/tmp/test.qcow2" },

"backing": { "driver": "raw",

"file": { "driver": "file",

"filename": "/dev/fdset/4" }

} } } }



Section 3

Complex graphs



Complex graphs

Building a tree

Remember: QMP is JSON, and JSON loves trees

Keep simple things simple: Trees can declare
children inline

"backing": { "driver": "qcow2",

"file": { "driver": "file",

"filename": "/dev/fdset/4" },

"backing": ... }



Complex graphs

Building any graph

Create the referenced block device with a
separate blockdev-add call

Reference it by its ID:
"backing": "my_backing_file"

Requires changes to some assumptions:
Suddenly not only the root has an ID
Nodes start having a separate life cycle



Section 4

Next steps



Next steps

Next steps (I)

Convert more options:

Makes them available below top level

Convert drivers from filename parsing to options:

Mainly network protocols are missing



Next steps

Next steps (II)

Allow building complex graphs:

Involves getting rid of assumptions

Create a block filter infrastructure:

Makes I/O throttling and Copy on Read
configurable with blockdev-add



Questions?


	What's wrong with it?
	Implementing the new way
	The command line
	QMP
	Complex graphs
	Next steps


