
KVM vs. Message Passing Throughput

Reducing Context Switching Overhead

Rik van Riel, Red Hat

KVM Forum 2013

KVM vs. Message Passing Workloads
● Message passing workloads

● What is going on?
● Where is the overhead?

● Underlying cause: optimizations
● Potential solutions

● Paravirtualized C-state driver
● Lazy FPU switching
● Lazy context switching (idle poll)

● Conclusions

Message Passing Workload
 Any workload that
● Sends many (short) messages
● Spends little time processing each message
● Spends time waiting for a reply (or the next message)
● Sometimes short intervals between messages

 Network
 IPC
 Process internal “messages”, eg. Java thread locking
 Example workloads:
● Transaction processing
● Web server with database

Message Passing Workload
 Process an event
 Wait for the next event
 Process that event
 Frequent transitions between running and idle

RUN IDLE RUN

Message passing program

Message Passing Workload (+ kernel)
 On running -> idle transition, kernel:
● Stores registers
● Runs scheduler
● Stores FPU/extended context

 On idle -> running transition, kernel:
● Restores registers
● Reloads MMU context (sometimes)
● Restores FPU/extended context (HW optimized)

RUN IDLE RUN

Message passing program

Message Passing Workload (+ virt)
 On running -> idle transition:
● Trap to host, VMEXIT
● Store FPU/extended state (unconditionally)
● Update VCPU state, run scheduler, etc.

 On idle -> running transition:
● Restore FPU/extended state (HW optimized)
● Restore guest state, VMENTER

RUN IDLE RUN

Message passing program

Visualizing the problem
 If the overhead is less than the idle time, things are fine

RUN IDLE RUN

Message passing program

Switching
Overhead

Visualizing the problem
 If the overhead is more than the idle time, big trouble
 Idle time can be arbitrarily short
● Just send more messages

 What if the idle time is half the switching overhead?
● Program stays “idle” for twice as long as desired!
● If run time per message is short, throughput can be

reduced severely

RUN IDLE RUN

Message passing program

Switching
Overhead

Where is the overhead?
 Idle -> running transition
● Restoring FPU/extended state

● Optimized by hardware, if FPU has not been used
since the guest stopped running (FXSTOROPT)

● Guest IRQ code
● Optimized with x2apic & PV-EIO

 Running -> idle transition
● VMEXIT, storing VMCS

● VMEXIT is fast on modern hardware
● KVM does lazy store, largely optimized away

● Storing FPU/extended state (FXSAVEOPT)
● Always slow, due to hardware optimizations

● Schedule takes some CPU time

Measuring the overhead
 Java test program with reader/writer threads, and a lock on

the queue
 Various things tried:
● default (vcpu_put/schedule/vcpu_load): 135531 / s
● vcpu_put/safe_halt/vcpu_load: 150476 / s
● vcpu_put/safe_halt/vcpu_load, skip FPU save: 205711
● safe_halt (no vcpu_put / vcpu_load): 214624 / s
● never trap to host (yield_on_hlt = n): 218260 / s

VMEXIT

schedule

FPU save/restore

Underlying cause: optimizations
 The system is optimized for busy, not for idle
● Guest can context switch without trapping to the host
● Includes guest reloading FPU “extended context”
● Guest context switches done without any additional

overhead
● Including updating VMCS, etc...

 When guest goes idle:
● Call HLT instruction for power saving
● HLT traps to host, checks if something else needs CPU

 Host does not know if the guest did a context switch
 Host does not know if guest used FPU
● Host needs to be safe, and save all guest context info
●

Potential solutions
 Avoid trapping to the host on short pauses
● Paravirtualized C-state driver

 Lazy FPU switching
● Leave contents in the FPU registers
● Only save them when somebody else needs the FPU

 Lazy context switching
● Keep the current context in the CPU when going idle

Paravirtualized C-state Driver
 Bare Metal C-state (cpuidle) Driver
 Paravirtualized C-state Driver
 Paravirtualized C-state Driver Issues

Bare Metal C-state (cpuidle) Driver
 Puts the CPU in power saving modes
 At sleep time:
● Guesses how long the CPU will be idle for
● Puts the CPU in a power saving mode appropriate for that

sleep time
● Look up the correct mode in a table of recommended

sleep times (and wakeup latencies)
● Longer sleep? Deeper power saving mode

● All it has to do is predict the future
 At wakeup time:
● Subtract wakeup latency actual sleep time, compare with

estimate (to correct future predictions)
 Paravirtualized will be a little harder...

Example cpuidle table

Nehalem states Exit Latency (uS) Target Residency (uS)

Poll 0 0

C1-NHM 3 6

C1E-NHM 10 20

C3-NHM 20 80

C6-NHM 200 800

Paravirtualized C-state Driver
 A cpuidle (c-state) driver for virtual machines
 Disable automatic trap-on-HLT on the host side
 Host exports table with wakeup latencies and target

residency times to the guest
 When a guest goes idle:
● Estimate idle time
● Select idle state

 Only two states available
● For short idle times, stay in the guest
● For long idle times, trap to the host

● Host can use power saving, or
● Host can run something else

Paravirtualized C-state Driver Issues
 The PV C-state driver idea has some fundamental issues
 Unpredictable wakeup latencies
● Who knows what the host will be doing?

● Not even the host knows in advance
● Difficult to fill in the wakeup latency table

 Larger variability will make predicting harder
 Not trapping to the host for short idle times
● Guest uses CPU time while idle
● Host may want to run something else when the guest

needs the CPU again
 Staying on the CPU may keep the program that would

answer our messages from running
● Delaying the thing we are waiting for is counter-productive,

and could lead to strange feedback effects

Example cpuidle table

Nehalem states Exit Latency (uS) Target Residency (uS)

Poll 0 0

C1-NHM 3 6

C1E-NHM 10 20

C3-NHM 20 80

C6-NHM 200 800

KVM states Exit Latency (uS) Target Residency (uS)

Stay in guest 0 0

Trap to host ??? ???

Lazy FPU switching
 Delay FPU context save after context switch
● Until something else needs the FPU, or
● Until the thread runs somewhere else, or
● Until some debugger or tracer needs the FPU context

 Send IPI if FPU context needs to be saved on remote CPU
● Could make FPU saving even slower than it already is...
● Could hit IPI + power saving latencies!

 Complicates the FPU code
 Unclear if this benefits anything besides KVM
 First implemented by Avi Kivity in 2010
 Shot down by Ingo, for reasons above
 Do we need something more generic?

Lazy Context Switching
 Goal: reduce both FPU and schedule overhead

 Introduction
 Details
 Default Poll Function
 Workflow
 Tradeoffs

VMEXIT

schedule

FPU save/restore

Lazy Context Switching Introduction
 Context switch overhead is not just hurting KVM
● Very fast IO devices (millions of IOPS/s) are slowed down

by tasks sleeping to wait for IO completion
● A second user is a reason for infrastructure...

 Basic idea:
● Allow any task to become an idle task temporarily

● Instead of context switching to the idle task
● Avoid context switch overhead for short sleeps
● Treat CPU as idle CPU

● Power saving during longer sleeps
● Run other tasks if they need CPU time

Lazy Context Switching Details
 New kernel function:
● idle_poll
● Gets two pointers in idle_poll_struct

 Poll function:
● Checks whether the task is done waiting, and should

continue running
● Argument to the poll function (if necessary)

int idle_poll(struct idle_poll_info *ipi)

struct idle_poll_info {
 int (*poll)(void *);
 void *data;
};

Lazy Context Switching Details
 Task preemption
● Task state needs to be saved on preemption
● Other things may need to be done
● preempt_notifiers already exist, no need for new code

 Wait list setup
● For KVM, kvm_vcpu_block adds the vcpu thread to a

waitqueue
● Allows vcpu_kick to wake the thread
● This can continue like before

Lazy Context Switching Default Poll Function
 KVM has not much status to check
● Only “did the task get woken by vcpu_kick?”
● Did task->state change to TASK_RUNNABLE?

 This is generic functionality, which could be used by others
 Implemented in idle_poll_default()
● Switch to other task, if there is a runnable one
● Place CPU in lazy TLB mode
● Identify CPU as idle to idle_cpu()
● Run idle balancer
● Call CPU power saving code, in case of long sleep
● Make sure preempt notifiers are set

Lazy Context Switching Workflow
 If CPU stays idle, until original thread returns:
● Mask task as running (non-idle) again
● Context switch is avoided

● Expensive FPU/extended state save avoided
 At task wakeup time
● Wake it up on the CPU where it still lives
● Possibly slightly better locality than the current wakeup

code?
 If something else needs to run on the CPU
● Use existing scheduler code to fire preempt_notifier
● Save FPU/extended state
● Switch to new task

Lazy Context Switching Tradeoffs
 Advantages:
● Avoids expensive FPU/extended state store if CPU stays

idle
● Simple infrastructure
● Multiple use cases
● If the host has something else to run, it can run now

 Disadvantages:
● Breaks Unix paradigm that the idle task is always PID 0
● Adds a little bit of code to scheduler
● Expensive FPU store when something else needs the

CPU, instead of doing the store while nothing wants to run
 Needs some heuristic to avoid the downside? Time will tell

Conclusions
 Dealing with message passing workloads is hard
● Hardware is optimized for being busy, or for being idle
● Not for continuously switching between the two

 Paravirt C-state Driver
● Isolated source code changes
● Not clear how to avoid fundamental issues (solvable?)

 Lazy FPU switching
● Special-purpose modifications to FPU code
● Potentially a bad worst case, with IPIs (solvable?)

 Lazy Context Switching
● Useful for multiple things, fewest potential downsides
● Requires some changes to scheduler code

 Stay tuned for “exciting” patches...

Questions?
Suggestions?
Opinions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

