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● Lazy context switching (idle poll)
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Message Passing Workload
 Any workload that
● Sends many (short) messages
● Spends little time processing each message
● Spends time waiting for a reply (or the next message)
● Sometimes short intervals between messages

 Network
 IPC
 Process internal “messages”, eg. Java thread locking
 Example workloads:
● Transaction processing
● Web server with database



Message Passing Workload
 Process an event
 Wait for the next event
 Process that event
 Frequent transitions between running and idle

RUN IDLE RUN

Message passing program



Message Passing Workload (+ kernel)
 On running -> idle transition, kernel:
● Stores registers
● Runs scheduler
● Stores FPU/extended context

 On idle -> running transition, kernel:
● Restores registers
● Reloads MMU context (sometimes)
● Restores FPU/extended context  (HW optimized)

RUN IDLE RUN

Message passing program



Message Passing Workload (+ virt)
 On running -> idle transition:
● Trap to host, VMEXIT
● Store FPU/extended state (unconditionally)
● Update VCPU state, run scheduler, etc.

 On idle -> running transition:
● Restore FPU/extended state (HW optimized)
● Restore guest state, VMENTER

RUN IDLE RUN

Message passing program



Visualizing the problem
 If the overhead is less than the idle time, things are fine

RUN IDLE RUN

Message passing program

Switching
Overhead



Visualizing the problem
 If the overhead is more than the idle time, big trouble
 Idle time can be arbitrarily short
● Just send more messages

 What if the idle time is half the switching overhead?
● Program stays “idle” for twice as long as desired!
● If run time per message is short, throughput can be 

reduced severely

RUN IDLE RUN

Message passing program

Switching
Overhead



Where is the overhead?
 Idle -> running transition
● Restoring FPU/extended state

● Optimized by hardware, if FPU has not been used 
since the guest stopped running (FXSTOROPT)

● Guest IRQ code
● Optimized with x2apic & PV-EIO

 Running -> idle transition
● VMEXIT, storing VMCS

● VMEXIT is fast on modern hardware
● KVM does lazy store, largely optimized away

● Storing FPU/extended state (FXSAVEOPT)
● Always slow, due to hardware optimizations

● Schedule takes some CPU time



Measuring the overhead
 Java test program with reader/writer threads, and a lock on 

the queue
 Various things tried:
● default (vcpu_put/schedule/vcpu_load): 135531 / s
● vcpu_put/safe_halt/vcpu_load: 150476 / s
● vcpu_put/safe_halt/vcpu_load, skip FPU save: 205711
● safe_halt (no vcpu_put / vcpu_load): 214624 / s
● never trap to host (yield_on_hlt = n): 218260 / s

VMEXIT

schedule

FPU save/restore



Underlying cause: optimizations
 The system is optimized for busy, not for idle
● Guest can context switch without trapping to the host
● Includes guest reloading FPU “extended context”
● Guest context switches done without any additional 

overhead
● Including updating VMCS, etc...

 When guest goes idle:
● Call HLT instruction for power saving
● HLT traps to host, checks if something else needs CPU

 Host does not know if the guest did a context switch
 Host does not know if guest used FPU
● Host needs to be safe, and save all guest context info
●



Potential solutions
 Avoid trapping to the host on short pauses
● Paravirtualized C-state driver

 Lazy FPU switching
● Leave contents in the FPU registers
● Only save them when somebody else needs the FPU

 Lazy context switching
● Keep the current context in the CPU when going idle



Paravirtualized C-state Driver
 Bare Metal C-state (cpuidle) Driver
 Paravirtualized C-state Driver
 Paravirtualized C-state Driver Issues



Bare Metal C-state (cpuidle) Driver
 Puts the CPU in power saving modes
 At sleep time:
● Guesses how long the CPU will be idle for
● Puts the CPU in a power saving mode appropriate for that 

sleep time
● Look up the correct mode in a table of recommended 

sleep times (and wakeup latencies)
● Longer sleep? Deeper power saving mode

● All it has to do is predict the future
 At wakeup time:
● Subtract wakeup latency actual sleep time, compare with 

estimate (to correct future predictions)
 Paravirtualized will be a little harder...



Example cpuidle table

Nehalem states Exit Latency (uS) Target Residency (uS)

Poll 0 0

C1-NHM 3 6

C1E-NHM 10 20

C3-NHM 20 80

C6-NHM 200 800



Paravirtualized C-state Driver
 A cpuidle (c-state) driver for virtual machines
 Disable automatic trap-on-HLT on the host side
 Host exports table with wakeup latencies and target 

residency times to the guest
 When a guest goes idle:
● Estimate idle time
● Select idle state

 Only two states available
● For short idle times, stay in the guest
● For long idle times, trap to the host

● Host can use power saving, or
● Host can run something else



Paravirtualized C-state Driver Issues
 The PV C-state driver idea has some fundamental issues
 Unpredictable wakeup latencies
● Who knows what the host will be doing?

● Not even the host knows in advance
● Difficult to fill in the wakeup latency table

 Larger variability will make predicting harder
 Not trapping to the host for short idle times
● Guest uses CPU time while idle
● Host may want to run something else when the guest 

needs the CPU again
 Staying on the CPU may keep the program that would 

answer our messages from running
● Delaying the thing we are waiting for is counter-productive, 

and could lead to strange feedback effects



Example cpuidle table

Nehalem states Exit Latency (uS) Target Residency (uS)

Poll 0 0

C1-NHM 3 6

C1E-NHM 10 20

C3-NHM 20 80

C6-NHM 200 800

KVM states Exit Latency (uS) Target Residency (uS)

Stay in guest 0 0

Trap to host ??? ???



Lazy FPU switching
 Delay FPU context save after context switch
● Until something else needs the FPU, or
● Until the thread runs somewhere else, or
● Until some debugger or tracer needs the FPU context

 Send IPI if FPU context needs to be saved on remote CPU
● Could make FPU saving even slower than it already is...
● Could hit IPI + power saving latencies!

 Complicates the FPU code
 Unclear if this benefits anything besides KVM
 First implemented by Avi Kivity in 2010
 Shot down by Ingo, for reasons above
 Do we need something more generic?



Lazy Context Switching
 Goal: reduce both FPU and schedule overhead

 Introduction
 Details
 Default Poll Function
 Workflow
 Tradeoffs

VMEXIT

schedule

FPU save/restore



Lazy Context Switching Introduction
 Context switch overhead is not just hurting KVM
● Very fast IO devices (millions of IOPS/s) are slowed down 

by tasks sleeping to wait for IO completion
● A second user is a reason for infrastructure...

 Basic idea:
● Allow any task to become an idle task temporarily

● Instead of context switching to the idle task
● Avoid context switch overhead for short sleeps
● Treat CPU as idle CPU

● Power saving during longer sleeps
● Run other tasks if they need CPU time



Lazy Context Switching Details
 New kernel function:
● idle_poll
● Gets two pointers in idle_poll_struct

 Poll function:
● Checks whether the task is done waiting, and should 

continue running
● Argument to the poll function (if necessary)

int idle_poll(struct idle_poll_info *ipi)

struct idle_poll_info {
       int (*poll)(void *);
       void *data;
};



Lazy Context Switching Details
 Task preemption
● Task state needs to be saved on preemption
● Other things may need to be done
● preempt_notifiers already exist, no need for new code

 Wait list setup
● For KVM, kvm_vcpu_block adds the vcpu thread to a 

waitqueue
● Allows vcpu_kick to wake the thread
● This can continue like before



Lazy Context Switching Default Poll Function
 KVM has not much status to check
● Only “did the task get woken by vcpu_kick?”
● Did task->state change to TASK_RUNNABLE?

 This is generic functionality, which could be used by others
 Implemented in idle_poll_default()
● Switch to other task, if there is a runnable one
● Place CPU in lazy TLB mode
● Identify CPU as idle to idle_cpu()
● Run idle balancer
● Call CPU power saving code, in case of long sleep
● Make sure preempt notifiers are set



Lazy Context Switching Workflow
 If CPU stays idle, until original thread returns:
● Mask task as running (non-idle) again
● Context switch is avoided

● Expensive FPU/extended state save avoided
 At task wakeup time
● Wake it up on the CPU where it still lives
● Possibly slightly better locality than the current wakeup 

code?
 If something else needs to run on the CPU
● Use existing scheduler code to fire preempt_notifier
● Save FPU/extended state
● Switch to new task



Lazy Context Switching Tradeoffs
 Advantages:
● Avoids expensive FPU/extended state store if CPU stays 

idle
● Simple infrastructure
● Multiple use cases
● If the host has something else to run, it can run now

 Disadvantages:
● Breaks Unix paradigm that the idle task is always PID 0
● Adds a little bit of code to scheduler
● Expensive FPU store when something else needs the 

CPU, instead of doing the store while nothing wants to run
 Needs some heuristic to avoid the downside? Time will tell



Conclusions
 Dealing with message passing workloads is hard
● Hardware is optimized for being busy, or for being idle
● Not for continuously switching between the two

 Paravirt C-state Driver
● Isolated source code changes
● Not clear how to avoid fundamental issues (solvable?)

 Lazy FPU switching
● Special-purpose modifications to FPU code
● Potentially a bad worst case, with IPIs (solvable?)

 Lazy Context Switching
● Useful for multiple things, fewest potential downsides
● Requires some changes to scheduler code

 Stay tuned for “exciting” patches...



Questions?
Suggestions?
Opinions?
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