
Copyright © Siemens AG 2012. All rights reserved.

Corporate Technology

For Performance and Latency,
not for Fun
How to overcome the Big QEMU Lock

Jan Kiszka, Siemens AG, Corporate Technology
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Slide 2 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Agenda

 Motivation
 Locking rules

 Memory access dispatching

 Back end / front end interaction

 Exemplary cut-through
 Conclusion

Slide 3 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Motivation:
Concurrency in QEMU/KVM

VCPU
VCPU

VCPU
VCPU

IO-Thread

• Device models
• I/O back-ends
• GUI
• QMP, HMP
• ...

VNC CCID
Card

Posix
AIO

pulse
audio

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

Slide 4 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

BQL – One after the other

Slide 5 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Pros & Cons

Limitations
 Scalability bottleneck for high-speed I/O
 Causes high latencies,

unacceptable for real-time workloads

Benefits
 Simple model, easier to get right
 Well confined, most subsystems do not need to bother

Slide 6 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Requirements for New Concurrency Scheme

Improvements for scalability and latency
 Enable decoupled I/O paths with different priorities
 Flexible locking policies, also allowing lock-free schemes

Integration / migration of BQL-dependent components
 Device models
 I/O back ends & timers
 TCG system & user emulation

Compact & comprehensible concept
 Consistent scheme with few or no exceptions
 Low impact on device models

Slide 7 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Fine-grained Locking –
and all will be good!?

Source: Glauber Costa

Slide 8 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Lock Ordering Rules

Big before small
 Big = coarse-grained, small = fine-grained

Reasoning
 Ordering avoids ABBA
 Risk of priority inversions:

 Waiting on big lock while holding small one
 turns small into big

Implications
 BQL-dependent services cannot be called while holding finer locks
 While holding the BQL, any lock can be taken in addition

Slide 9 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Lock Ordering Rules (2)

While holding lock A, do not call anything that takes lock B
if you can be called back to take A while B is locked

 Examples:
 Device A triggers access to device B triggers access to Device A
or
 Context 1: back end A triggers access to device B
 Context 2: device B triggers access to back end A

Reasoning
 Avoid lock recursion
 Avoid ABBA deadlock

Implications
 Managing mutual access of devices and backends will be tricky

Slide 10 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Critical BQL Zones (from last year's talk)

CPUState
 Read/write access
 cpu_single_env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
 TX on network layer
 Write to character device
 Timer setup, etc.

Back-end events (iothread jobs)
 Network RX, read from chardev, timer signals, …

IRQ delivery
 Raising/lowering from device model to IRQ chip
 Injection into VCPU (if user space IRQ chips)

Slide 11 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Memory Region Access Dispatching
(by Liu Ping Fan, simplified version)

 address_space.lock()
 region_section = look_up(address)
 reference_held = region_section.reference()
 address_space.unlock()
 if (reference_held) { /* means: use fine grained locking */
 region_section.access_handler(...)
 region_section.unreference()
 } else { /* use BQL */
 bql.lock()
 address_space.lock()
 region_section = look_up(address)
 address_space.unlock()
 region_section.access_handler(...)
 bql.unlock()
 }

Slide 12 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Memory Region Reconfiguration

 add/remove/enable_memory_region()
 for_each_address_space()
 address_space.lock()
 address_space.update_topology()
 address_space.unlock()

Implications
 May but need not run under BQL
 Access possible after disabling/removing
 Memory region must not vanish after removal

Address space locking alternatives
 RCU

=> accelerates read path
 Stop VM

=> cannot be triggerd from region access handlers

Slide 13 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Handling Destruction

Referencing section locks down memory region owner
 Object (opaque) addressed via callback must not vanish
 Proposal by Liu Ping Fan

 New memory region ops for
reference/unreference

 Region owner implements callbacks
to reference QOM object (e.g. device)
=> Boilerplate code in device models

 Alternative: pass QOM object (not qdev!)
 ...replacing opaque
 ...in addition to opaque, as “owner”

Object destruction on last reference release

Challenge: Race between destruction and callback execution
 Rule: callback must not “re-activate” object

Slide 14 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Prevent Dispatch Nesting

Prevention approach
 Reject nested MMIO access, still allowing RAM access
 Uses thread local variable to track nesting

Impact
 Lock recursion
 ABBA deadlock between devices
 May prevent few valid corner cases

(still looking for examples...)

Device A, MMIO write

device.lock()
mmio_write()

Device B, MMIO write

device.lock()
mmio_write()

Slide 15 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Generalization:
Event Dispatching & Callback Management

Reuse these patterns!

Candidates
 Memory regions
 Timers
 File descriptor callbacks
 Event notifiers
 …

Slide 16 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Locking of Front Ends and Back Ends –
Separate Locks

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

timer.lock()
modifiy_timer_list
set_alarm_timer
...

Alarm timer X, timer thread

wait_expiry()
timer.lock()
callback = lookup_n_ref()
timer.unlock()
callback()

Device A, timer handler

device.lock()
handle_timeout()
...

Slide 17 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Locking of Front Ends and Back Ends –
Back End as Library

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

modifiy_timer_list
set_alarm_timer
...

Alarm timer X, expiry

callback = lookup(timer)
callback()

Device A, timer handler

handle_timeout()
...

Device A, timer thread

wait_event()
device.lock()
alarm_timer_check()

Slide 18 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

“Let's use glib's main loop!”

Advantages
 Abstractions for event handling

on all supported host platforms
 Can obsolete many lines of code in QEMU

Show-stopper
 Uses internal locks in an uncontrollable way
 Locks are incompatible with RT prioritization
=> OK for main (best effort) I/O thread,
 no-go for real-time I/O paths

Slide 19 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Managing Legacy

Motivation:
BQL will be present for a long time,
maybe forever

How to create BQL-free services?
 Keep existing interfaces
 Provide BQL-free alternatives
=> Existing code continues to work
 (TCG, device models, …)
=> No need to convert “uninteresting” subsystems
 (UI, slirp, ...)

Ludmiła Pilecka, licensed under CC BY-3.0

Slide 20 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Direct IRQ Forwarding (slide from last year)

Typical IRQ path
 Device changes level / generates edge
 IRQ routers (PCI host, bridges, IRQ remapper, etc.)

forward to interrupt controller
 Interrupt controller forwards to CPU
=> Routing involves multiple device models,

i.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
 Hacks exist to explore and monitor routes – on x86
=> Generic mechanism required

Fast path from device to target CPU
 No interaction with routing devices
 State changes (reroutes, blockings) reported to subscribers
 Routing device states can be updated on demand

PCI-specific
workaround
merged for
vfio & pci-assign

Slide 21 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Scenario:
(Partially) Decoupled PC RTC Device Model

Use case
 Real-time capable periodic timer

Requirements
 BQL-free periodic timer IRQ
 BQL-free read of register C (IRQ cause)
 BQL-free write of index register

Derived requirements
 BQL-free PIO dispatching
 BQL-free alarm timer backend
 Strategy to avoid complete conversion

Slide 22 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Scalable Clock/Timer Subsystem

Clock issues
 CLOCK_REALTIME works without locks
 CLOCK_HOST requires dedicated lock for reset detection
 CLOCK_VIRTUAL requires lock for timers_state –

but then stumbles over icount

Timer issues
 Multi-instance support required,

binding to separate threads
 Preferred future model yet open

 timerfd (+ current signal code as fallback)
 select/poll timeouts

Slide 23 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Prototype Results

First cut-through
 Unlocked PIO dispatch
 Flag controls BQL need per memory region
 Multi-instance alarm timer (dynticks only)
 mc146818rtc changes^Whacks
=>Guest accepted RTC as reliable clock source

Not considered (means: left broken behind)
 PIO hotplug => keep hands off devices!
 HPET control over RTC => -no-hpet
 Lost tick compensation => -global [...].lost_tick_policy=discard
 VM-clock based RTC => -rtc clock=host|rt
 IRQ delivery in TCG mode => -enable-kvm

Slide 24 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Summary

Down with the BQL!
 Limits I/O scalability
 Prevents RT use cases

Locking is hard, so let's use more of it!
 Fine grained locking can help
 Strict ordering rules, nesting prevention required

Lots of fun ahead!
 Subsystems require BQL-free interfaces
 Device models need to be converted
 Likely some tricky corner cases remaining...

Work toward cut-through!
 Generic show case needed, e.g. low-latency networking via E1000
 Further suggestions welcome => RT-KVM BoF

Slide 25 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Any Questions?

Thank you!

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

