
Copyright © Siemens AG 2009. All rights reserved.

Corporate Technology

KVM in Embedded
Requirements, Experiences,
Open Challenges

Jan Kiszka, Siemens AG
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Corporate Technology

Slide 2 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Agenda

 Embedded virtualization
 What does it mean?
 Why using KVM?

 Use case: KVM-hosted enterprise communication
 Setup & requirements
 Virtualization stack experiences

 KVM and real-time
 Host & guest-side RT
 Possible enhancements

 Conclusion

Slide 3 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Embedded Systems, Embedded Virtualization

“Embedded” means
 Small?
 Limited resources?
 No display?
 Hard real-time?
 ...?

More generic definition
 Designed to perform specific,

dedicated tasks
 Integrated part of a larger device
 Not recognizable as individual

computer system

Embedded Virtualization
 System uses virtualization transparently
 May involve adaptions to system's task

Slide 4 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Legacy system migration
 Avoid “divorce” of application and legacy OS
 Single-core software stacks on multicore hosts
 Emulation of discontinued hardware

Embedded Virtualization Benefits

Consolidation (keeping isolation)
 RTOS aside standard OS
 Multiple virtual boards (or root filesystems) on single silicon

Development environment
 Hardware/software co-development
 Debugging environment
 Virtualization allows speed-up (compared to pure emulation)

Slide 5 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Top Requirements on Embedded Hypervisors

 Hardware support
 CPU architecture
 Board
 Virtualization extensions (CPU, I/O)

 Guest OS support

 Isolation
 Spatial (license barrier, IPR protection, rarely data security)
 Temporal (provide real-time guarantees)

 Customizability

 Footprint (volume markets)

Slide 6 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

From Enterprise to Embedded Virtualization –
Why using KVM?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

“But it would be nice to...”
 share some devices
 run upstream Linux

and latest Windows

Hypervisor

 over-commit resources
 manage power

Hypervisor backup / migrate guests
 use advanced HA features
 ...

Hypervisor

Core 1 Core 2 Core 3 Core n

Slide 7 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Requirements Match

Requirement KVM support

Architecture support
 x86
 PowerPC (Book E&S, no ISA 2.06 yet)
 ARM early stage
 Others ?

Board support (Linux...)
Guest OS support (broad test bed, virtio drivers, ...)
Customizability
Footprint depends on use case
Isolation
 Spatial (for most use cases)
 Temporal improvable

Future requirements well prepared

Slide 8 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case Example

KVM-hosted Enterprise Communication

Slide 9 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case:
KVM-hosted Enterprise Communication

The user
Siemens Enterprise Communication (SEN)

The mission
Move proprietary RTOS and application stack
from custom hardware to standard x86

Requirements
 Low impact on guest
 Preserve (soft) real-time qualities
 Prefer mainline open source technology

Evaluation ruled out
 Invasive paravirtualization (e.g. Xen's PV mode)
 Pure emulation
 Projects with too small communities

Slide 10 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case:
KVM-hosted Enterprise Communication (2)

The choice: QEMU/KVM
 Early proof of concept using QEMU
 ~2500 LoC for custom hardware bits
 KVM acceleration nicely integrates on top
 Upstreamed generic fixes/enhancements since day 1

The new platform:
 QEMU/KVM hosts...
 proprietary RTOS (multiple instances)
 formerly stand-alone application stacks (virtual Linux appliances)

 libvirt as hypervisor interface
 Includes high availability stack

Two possible deployments
 Pre-installed on rack system => virtualization is embedded
 On customer server => virtual appliances

Slide 11 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

SEN Project Experiences

Segmented x86 guests
 16-bit mode works quite well (despite uncommon use case)
 Task switching required most patching (few issues may remain)

Soft real-time is achievable
 mlockall() + renice -20
 Most latencies were I/O-related
 Decoupled logging and chardev outputs

Board model maintenance
 Out-of-tree enables flexible customizations
 ...but requires custom qemu-kvm package
 Upstream merge appears unrealistic
 3rd way?
 Open-Source-only machine plug-ins?
 Stable API per stable series?

Slide 12 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

SEN Project Experiences (2)

Libvirt
 Feature gap required latest & greatest
 Faced few stability issues (resource management...)
 Suboptimal: QEMU wrapper script workaround
 All in all: benefits outweigh current drawbacks

Current open topic: live backup / snapshot
 Block live migration (yet?) too slow
 QEMU snapshots: longer downtime, qcow2-only
 libvirt-managed file-system / block layer snapshots?

Slide 13 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Improving KVM

KVM and Real-Time

Slide 14 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

KVM and Real-Time –
Meeting Host Requirements

Requirement:
Guests must not defer host RT applications

Preemptible KVM
 Problem mostly solved
 The key: preemption notifiers (arch-agnostic concept)
 Keep an eye on preempt/IRQ-disabled paths!
 Known pitfall: wbinvd latencies (x86)

KVM on PREEMPT_RT
 Long supported, but quality varying
 Current 2.6.33.x-rt is fine
 Adoption of raw spinlocks reduced maintenance
 Risk of regressions remain => include in autotest?

Slide 15 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

KVM and Real-Time –
Meeting Guest Requirements

Requirement:
Fulfill guest tasks in a timely manner

Precondition
Sufficient host real-time qualities
(PREEMPT_NONE → PREEMPT → PREEMPT_RT)

Already achievable
 Soft real-time
 Moderate guest reaction times
 Example for <1 ms peak latency:

Host timer IRQ →in-kernel APIC model →guest RTOS →guest task

Feasible goals
 Standard KVM architecture: < 200 µs (x86)
 “Dedicated” KVM mode: close to hardware limits (<< 50 µs on x86)

Slide 16 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

What Kills Guest Real-Time?

KVM's MMU emulation
 Can contribute several milliseconds guest latency
 EPT/NPT resolves the issue
 Legacy RTOSes may also run MMU-less

I/O-related priority inversions
 Threaded AIO completions can accumulate long work queues

=> use Linux AIO or lower AIO thread priority
 QCOW2 (contains synchronous write calls)
 SDL graphic output
 Heavy traffic on chardev backends (e.g. virtual serial port)

RT-aware device emulation required
 We already heard about threading it... (→ Anthony's talk)
 No costly synchronous host services in VCPU context!
 Per-device locking will help to avoid priority inversions
 Also relevant for SMP scalability

Slide 17 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Managing Priorities

Priority

Guest AGuest A

RT task

Time-sharing
task

Guest B

Time-sharing
task

Black-Box
VM Scheduling

Guest A Guest B

Time-sharing
task

RT task

Time-sharing
task

Paravirtual
Scheduling

Slide 18 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Towards Minimal-Latency KVM

WindowsLegacy
RTOS

 Linux

Core 1 Core n

nano KVM

Full KVM

Linux
Appl.

Legacy
RTOS

nano KVM

Core 1 Core n

 Linux

Enable migrationKVM as fixed partition
hypervisor

Slide 19 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Conclusion

 Embedded Virtualization is a broad domain,
today focused on multi-core partitioning

 KVM already meets many of its key requirements

 Well set up for bringing enterprise features to embedded

 More work required

 Reduce prio-inversions in hypervisor

 Temporal isolation of guests

 Paravirtualized scheduling

 Non-x86 architectures

KVM may never fit all embedded use case, but a significant share

Slide 20 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Thank You!

Any Questions?

Slide 21 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Paravirtualized Scheduling

Execution model
 Use POSIX scheduling policies
 Per-VCPU policy/priority
 Map guest on VCPU thread priorities:

 Boost to maximum priority during interrupt
 Nested boosts for NMI support

Host-guest Interface
 Two hypercalls
 Set Scheduling Parameters (CPU-ID, policy, priority)
 Interrupt Done

KVM prototype “just” requires rebase and upstream posting

Slide 22 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Towards Minimal-Latency KVM (2)

Step 1: Advanced CPU isolation
 Single task shall dominate CPU
 Many proposals brought up, none mainline compatible
 Requires iterative approach
 Migrate timers, disable sched tick
 Move housekeeping work
 Exclude CPU from RCU
 Reduce IPI reasons

 Many folks interested, but no one working on it ATM

Reduce RT-unrelated “noise”

Step 2: Run KVM VCPUs on isolated CPUs
 Goals (guest in operation mode):
 Zero user space VMM exits
 Zero host task switches

 In-kernel non-threaded IRQ (re-)injection
 Adopt guest to avoid user space device emulations

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

