

Migrating NFV Applications to KVM Guest

August 19 - 21, 2015 Sheraton Seattle, Seattle, WA

Mario Smarduch Senior Virtualization Architect Open Source Group Samsung Research America (Silicon Valley) m.smarduch@samsung.com

Background

➢ Bell Labs − 5ESS

- RT- Kernel patching 0 downtime
 - Patch, reclaim, atomic transfer vector switch
- Enhanced CPU accounting provide more reasons
- > Motorola iDEN push to talk wireless system
 - 1.3s for end-to-end group call LMR cross country
 - RT scheduling end-to-end latency tuning
 - Implemented Precise Process Accounting
 - Used by Sprint, Clearwire, ..., root cause deployment issues
- > NFV Hypervisor run-time hardening (not Security Hardening)
- Spent time at customer sites -
 - On site in Seattle Public Safety outage, LA, SF deployment
 - Seen deployments blocked cost millions \$\$\$

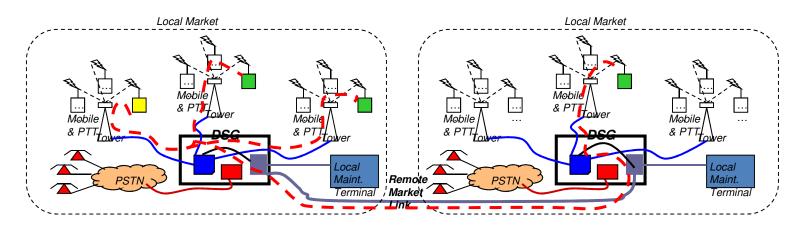
What is NFV

- ETSI Standard
 - Virtualization of Network Functions previously deployed on hardware
- ➢ NFV Enables
 - COTS, Hardware Flexibility
 - HW is abstracted (for example QEMU machine model)
 - Rapid Network Function innovation/implementation/deployment
 - Aka Virtual Network Function
 - Innovation/implementation VM a sandbox (image, qemu/kvmtool)
 - Deployment cloud image server
 - Lower Operational cost and power usage
 - Cloud infrastructure and VM operations i.e. migration, VM power off
 - Dynamic Network Function Chaining
 - Cloud infrastructure orchestration, scaling
 - Standard VNF to HV and Cloud interface
 - Standardized VM Image & HV cloud mgmt interface

Advantages of full Virtualization for NFV

- ➢ Run mixed OS's
- Run mixed distros
 - no kernel configs & system tunable conflicts
- > Own whole vertical stack kernel & modules, user space
 - TEMs need some custom features in kernel
 - For example TIPC, SAF HPI to emulated PV-IPMI
- > Live migration, snapshot get whole kernel state
- Debug you own whole stack
- ➤ Backward compatibility Old OS, New OS on older HW emulated
- > No SPOF, quick restart on panic or HA
- > Coarse grained resource isolation/security isolation
- > No /proc conflicts
- \succ Deliver whole VM i.e. no worries about library versioning

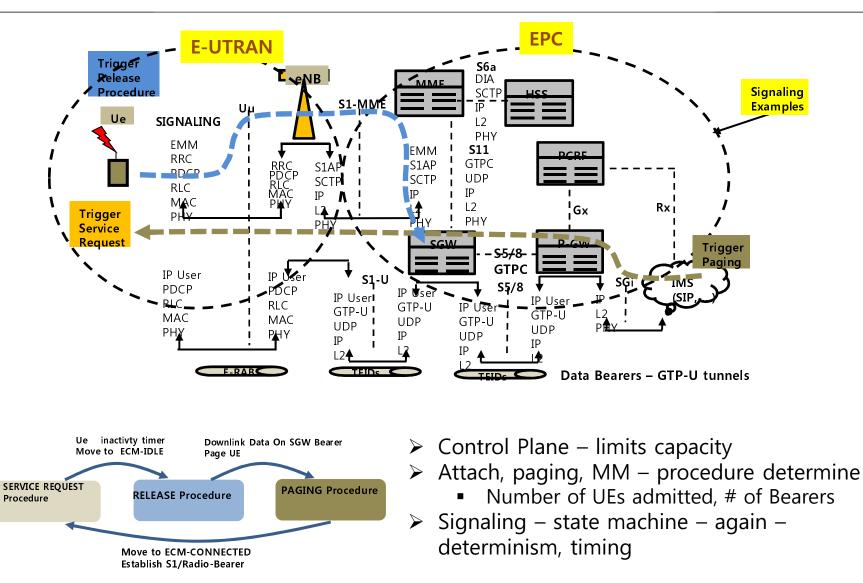
Sometime back - CG-Linux


- Early CG-Linux not quite same but similar new challenges
 - TEMs adapted quickly Freedom from OS lock in
- ➤ CG Linux deployment
 - Moving from RT proprietary OS's to Linux
 - Gaps expectation vs. implementation NFV new challenges
 - Timers non granular coarse
 - Pre-emption long periods non-preemptible
 - Poll/select poor scaling with large fd set
 - POSIX Extensions not compliant no robustness, priority inversion,...
 - Memory Overcommit policies confusing
 - CPU accounting huge issue sampled unreliable results
 If you can't measure you can't tune
 - IP pkts out of order
- Eventually Gaps resolved
 - Application adaption
 - Community OSDL CGL played a big role
 - HW vendors

Wireless Networks and CG Environment

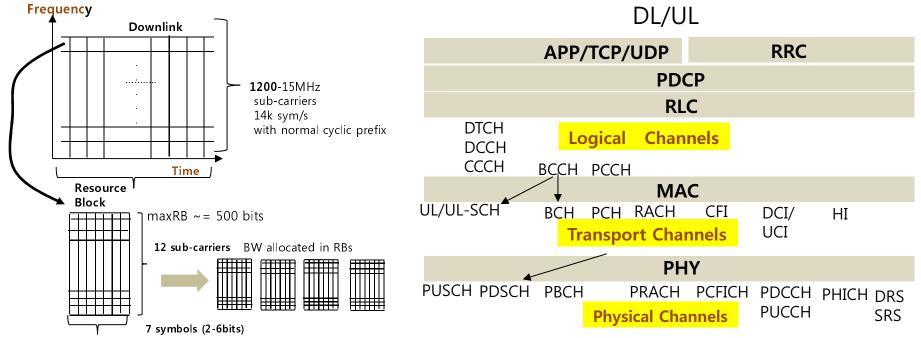
- Demanding Env primarily measure system up-time
 - Widely used metric 5 9's (.99999) availability
 - outages <= 30s don't count
 - <= ~5min 26sec downtime/year
 - But ... real metric customer
 - 95% of user per cell satisifed
 - Data Plane satisfied means 98%+ VoIP pkts arrive within 50mS
 - Latency perception key issue
 - Call Processing huge impact on capacity and QoS
 - □ CP SAU/cell ~400/5MHz RRC_IDLE to CONNECTED ~100mS
 - RRC_CONNECTED primarily Ue can issue UL sched req., get grants
 - Extreme emphasis on immediate root cause
 - IT Support We're working on it or maybe not acceptable
 - Carrier Support immediate root cause …
 - Deployment moved back, huge financial penalites
 - Nothing invasive (PMU, Debug, ...), no direct access allowed

Wireless Environment

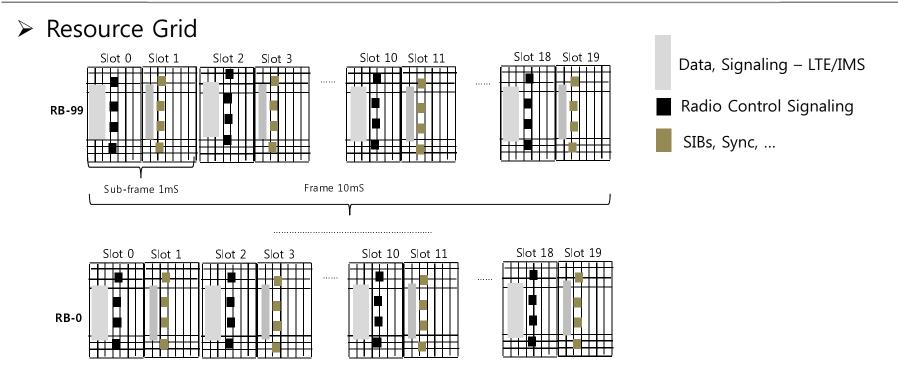

- Regardless 2G-4G Control Plane, Data Plane, O&M
- Control Plane state machine
 - Driven by Event or Timer
 - Range extreme LMRN PLMN
 - LTE huge improvements Radio Access increased capacity
 - □ OFDMA, SC-FDMA, MIMO spatial multiplexing, rcv/tx diverslity, ...

Signaling Example

- Public Safety PTT Group call yellow dispatches green 1.3s to 'chirp'
- Message lookup HLR, page all mobiles, allocate bw, get confirm, ...
- real-time but what does it mean here?
 - □ Deterministic execution each NE bound latency/capacity
 - □ For CP signaling deadline constraints

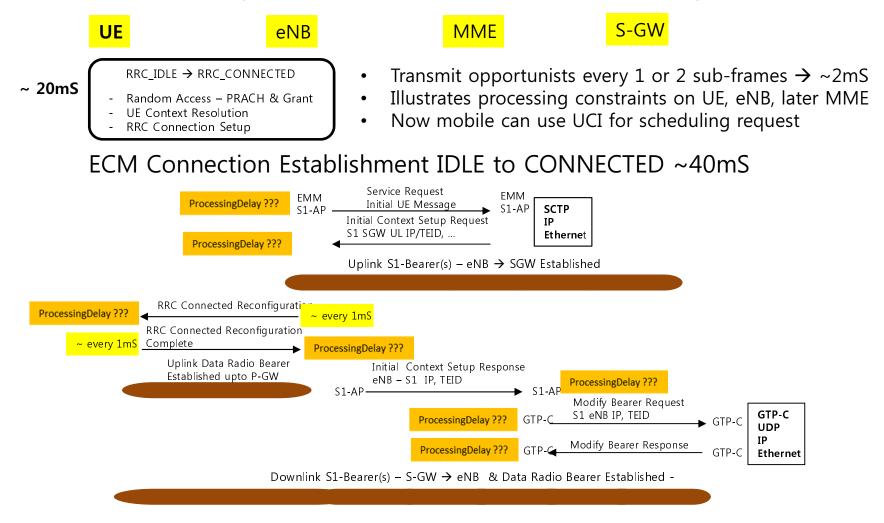

LTE High Level Architecture

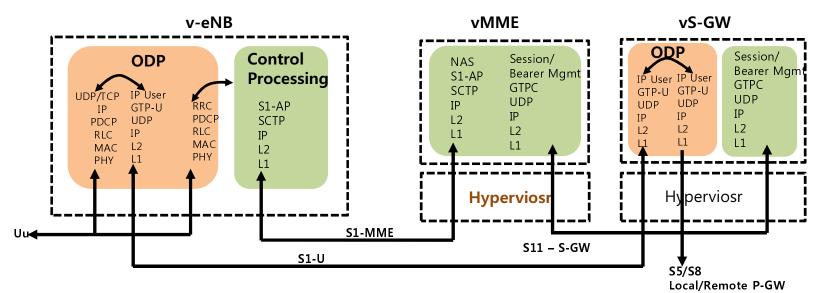
Basics of LTE Radio Access Side


► LTE DL Resource Grid

eNB only or EPS procedures

- Some traffic eNB only
 - DCI DL sched cmd, UL sched grant, pwr/diversity ctrl
 - UCI ARQ ack, sched rqst; CFI pfi organization of data & ctrl info
 - PRACH random access i.e.– attach, sr or tracking update procedures
- ➢ eNB radio & EPC processing
 - Scheduling most complex Fairness vs Throughput, power ctrl, fading, spreading
 - Dimensioning TA List, page rqsts, handovers

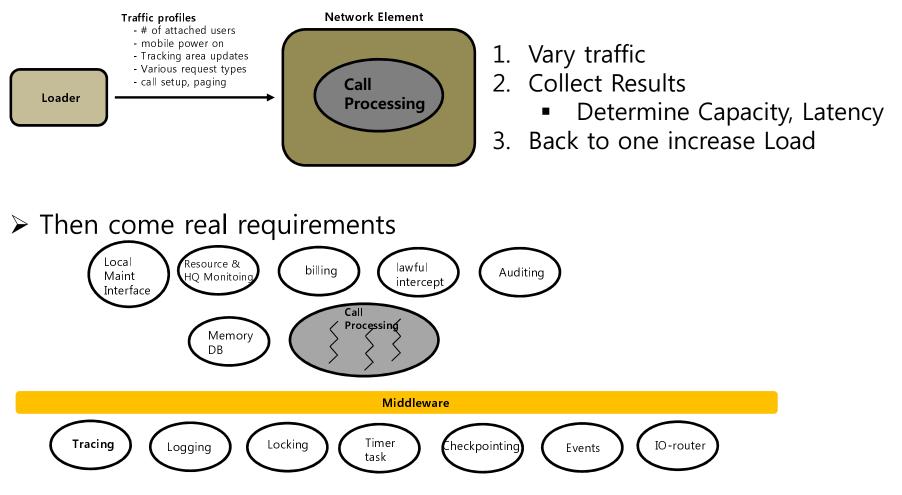

Basics of LTE Radio Access Side


- ▶ RBs allocated to Control like B-CH, PDCCH, PUCCH, PRACH, PHICH
 - Mostly Base Station (eNB) processing RT, demanding
 - Signaling relevant only to eNB
- ➢ RBs for data − PDSCH/PUSCH
 - Not really though LTE procedures paging, attach, idle → connected
 - SIP-UA and IMS transparent to LTE except QoS
- > Allocation carrier & area specific dimensioning engineers

Network Call Processing Example

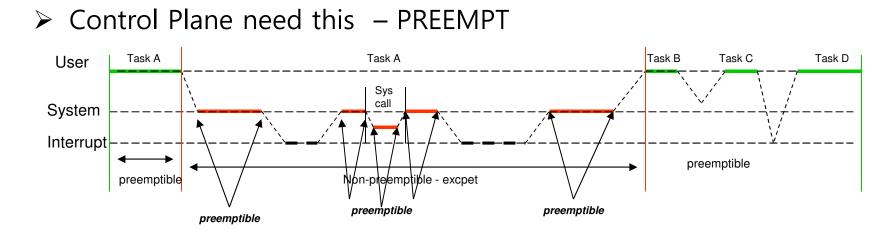
Service Request – mobile UL request – idle to connected
 RRC 100ms – in practice < 100ms for EPS Bearer setup

Example NFV Implementation

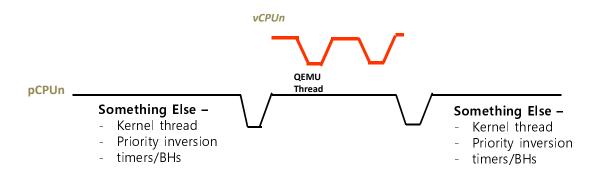

- Mixed Run-time environment
 - Data Plane -
 - CPU dedicated, isolated from OS i.e. no scheduler, interruts, timers
 - Hard real-time tight loop latency in few hundred uS's
 - Device passthrough
 - Or control plane
 - RT deterministic kernel scheduler/timers
 - Virtio
 - Management VM not RT intensive
 - eNB
 - RRU backhauled multiple-technologies GSM/UMTS/LTE
 - Vision C-RAN
 - MME, S-GW virtualized NEs

- > New Gaps more challenging at System Level
 - Deterministic Execution
 - SR higher pri then UE Attach, ...
 - DP co-exist with CP i.e. ODP w/ RT, TS apps
 May decompose
 - Timers
 - LTE Ue timer appear friendly Service Request 5s
 - But for MME pool 100,000s, or millions of attached user
 - Rush hour or event 10000s of signaling messages
 - Accounting CPU all starts here time accrued to something
 - Need precise measurement non-intrusive
 - Load shedding relies on it
 - O&M, Root Cause analysis
 - Other Gaps some highlighted later
 - Challenges latency, performance, capacity
 - W/reasonable overhead

Lmbench and rt-tests test environment


- Intel Xeon 2.3GHz, I1-cache 32k, I2 256k, I3 15MB 12 CPUs
 NFV COTS
- ➢ kernel 4.1, QEMU 2.0.0
- Focus on Generic gaps
- Host/Guest PREEMPT
 - Host CONFIG_HZ_1000, CONFIG_NO_HZ
 - Guest CONFIG_NO_HZ, CONFIG_HZ_500
 - Hosts/Guest(s) vCPUs pinned 4 CPUs
- LMBench/rt-tests both heavily used in wireless
 - LMBench basic cost of operations
 - rt-tests sched latency, migration delay
- ≻ Key NFV attributes
 - COTS VNF support
 - VNF Decomposition
 - Improved operational efficiency, scalability

Building a Network Element



- Long iterative process in short conflicting workloads
 - Prioritize, vary load, determine capacity
 - Defect arrival rate < X field trials

Two Level Scheduling & Determinism

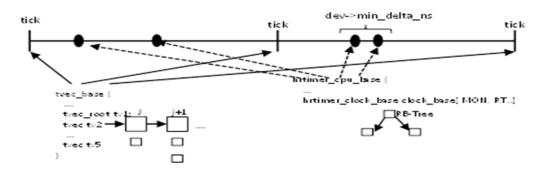
> But winding up with this

Latency Testing

- Cyclictest Host/Guest idle system
- > Host

```
# taskset -c0,3 ./cyclictest -q -t20 -p 99 -n -i 500/5000 -l 10000 - 1-2% - CPU
Min 2uS Max ~16uS/390uS Avg ~2uS
```

➢ Guest – vCPUs bound to cpu 0-3 – io thread to other, w/-realtime

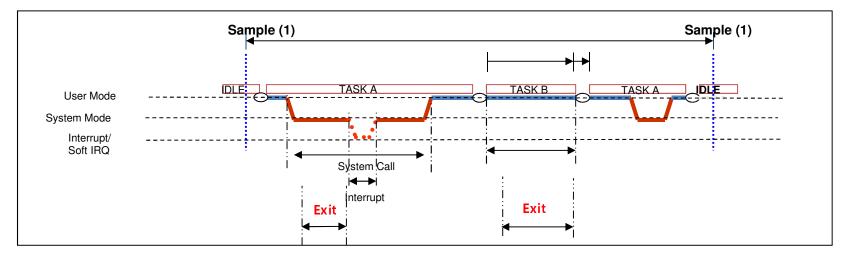

- vCPU threads SCHED_OTHER, 1 Guest intervals 500uS & 5000uS
 Min 19uS Max 1000uS Avg 60uS 40% CPU
 Min 23uS Max 1200uS Avg 90uS 20% CPU
- vCPU threads fifo or -rr priority 99
 Min 17uS Max 300us Avg 60uS 40% CPU
 Min 16uS Max 433uS Avg ~90uS 20% CPU
- Two Guests fifo/rr priority 99
 Min 20uS Max 495uS Avg 65uS 2 x 40% CPU Min 21uS Max 540uS Avg 100uS - 2 x 20% CPU

Conclusions

- Guest Latencies reasonable
- CPU high kills COTS, managebility
- Setting vCPUs to RR/FIFO helps lower MAX
- Todo:
 - Host PREEMPT_RT NO_HZ_FULL, nohz_full, rcu_nocbs for Data Plane
 - High tick rate for Control Plane tune kernel threads, ftrace, perf,,
 - CP/DP decompose several VNFs?

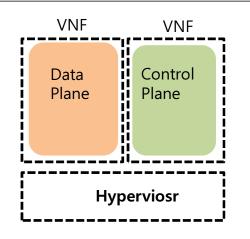
Timers LMBench Test

- ➤ lat_usleep usleep | nanosleep ...
 - **Guest** 50% slower (100uS to 54uS) CPU usage up 20% higher
- > To mitigate
 - Dedicated timer task coalesces requests x requests/interval
 - Overhead negligible for 2mS coalescing


- Conclusions
 - Coalescing helps not total solution (i.e. MME 20,000 SRs/5s 250uS)
 - More vCPUs/pCPUs
 - How to deliver high timer rate to guest with low overhead?

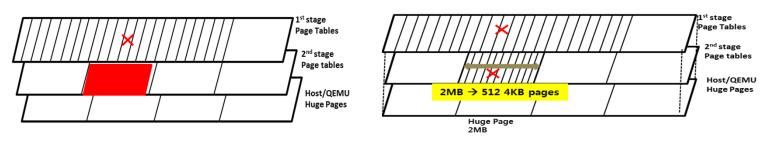
MMU

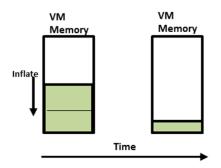
- Iat_mem_rd 128MB strides 32/64/128/256 bytes
 - Latency to red 32/64/128/256 bytes over 128MB region
 - Guest Host CPU usage constant 100% Host 13-41% -
 - memory access latency doubled or 40% slower (nS ranges)
- bw_mem 200MB rd/wr/rd looks reasonable
 - Guest Host CPU 104% Host 96%
 - Guest Host CPU 102% host 97%
 - Guest Host CPU 102% host 100%
- lat_mmap/lat_ctx some issues here
 - Host 24uS CPU Guest 64uS mmap (not sure why?, could live with it)
 - CPU usage 81% host 41% ctxt with 8MB noise nested walk?
- ➤ To mitigate stripe memory across vCPUs 128MB/4 usage 45-62%
 - Thread/vCPU
- ➤ Conclusions?
 - Nested Page Table Walk, Guest friendly flushing
 - IPTW Cache size/associativity performance monitoring?
 - Need proper hw selection, benchmarking close gap


CPU Accounting now with Exits

> Now we have this

- ➤ 'spin' on Guest/Host both show 100%
 - Cycle based accounting per-cpu w/more info
 - Load capacity mgmt confused
 - SNMP trap Guest & Exit time
 - □ UCD-SNMP-MIB i.e. snmptable, ...; snmpwalk <IP> UCD-SNMP-MIB::systemStats
 - □ Augmented by VM exit stats
 - Confusing to O&M two indicators go red
 - Guest associate exits with mode, thread, vCPU
 - O&M view VNF as NE intelligent load scheding
- > During development rely on tools only available in field
 - That's all you get!


Inter VM IPC


- Scale Vertically
 - Decompose VNF
 - In HA configuration
 - Posix like IPC
- > Accelerated synchronization & message passing between VMs
- Slow path inter-guest interrupt
 - Like ivshmem very slow
- ➢ HV Call interface − requires new code
- Fast path dedicated synchronization support (ARM f.e.)
 - ARM SEV, WFE wakes up everyone
 - SEV #imm, WFE #imm associate with Guest
 - Instructions Hint, Scope unknown most likely needs hw extensions
- Posix like shared memory discovery ivshmem a start

VM Management

- ➢ Rapid migration w/huge pages EPS NE with memory DBs
 - Huge pages performance, slows migration –near idle loads succeed
 - Function of mem size and dirty rate
 - Shorten downtime
 - To mitigate split during migration, merge after
 - Much higher dirty rates supported

- Ballooning unreliable
 - Close gap between issue request and execution prevent lockup
 - Mix of locked rt and non-rt code

Other LMBench operation Latencies

- ➤ More to do's
- System Calls ??
 - lat_syscall
 - Read Host .11uS, Guest .31uS
 - Write Host .16uS, Guest .32uS
 - File 1.5uS, vs. 3.82uS
- Signal Delivery ??
 - Iat_sig catch Host .85uS vs. Guest 2uS
- ➢ latency on fork, exec, shell 50% higher
 - To mitigate use threads dont fork()/exec()
 - But in CG threads hard to debug, unsafe
 - CG fault recovery model save FDs, checkpoint state, restart
 - □ CG use system("....") do something
 - □ SAF services
- Conclusions
 - Sys calls/Signals- should be native???
 - For/Exec/Shell IPI costly

Other Gaps

- > HW, enhancements, awareness i.e. -
 - vCPU and IO-Threads locality & NUMA
 - Host doesn't swap kernel pages, Guests kernel pages can
 - Realtime lock pages but limits overcommit
 - Guests more then tiny, .., large resource + behavior (preempt/voluntary)
 - Guest Overcommit small guest don't forget QEMU
 - AsyncPF powerful feature w/o temp CPU unplug
 - world switch costly
 - Interrupt injection -
 - Direct injection for IPIs, Device, Timers
 - IRQ affinity vCPU to pCPU on exit return inject to vCPU
 - Device Pass-through
 - Some not behind IOMMU i.e. HPI controller
 - Not all NICs crypto devices

Migrating NFV Applications to KVM Guest

🛗 August 19 - 21, 2015 🛛 ♀ Sheraton Seattle, Seattle, WA

© 2015 SAMSUNG Electronics Co.

Thank you.