

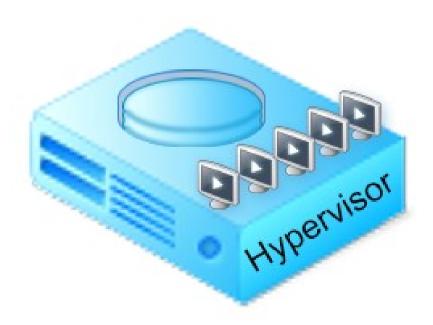
Linux Storage Stack for the Cloud

Oct 2013

Yeela Kaplan Software Engineer Cloud Storage Team Red Hat

Who am I

Agenda



- Storage virtualization Why, What and How?
- Challenges & Solutions in the enterprise
- oVirt Design and Implementation
- Q&A

Why storage virtualization?

- Limited physical disk interfaces
- Fixed size
- Can't join disks
 - Performance
 - Storage array limitations
 - Multiple arrays

Storage virtualization

Create virtual devices with disk behavior

- Partition table
- Storage arrays
- LVM

Storage with benefits

- Space flexibility
- Create devices 'on the fly'
- Snapshots

Image

A virtual disk for a vm

- One image is worth many volumes
- Volume:
 - YABS Yet Another Block Sequence
- Volume types:
 - File
 - Block

What is the problem?

Enterprise storage needs

Multiple data centers

X

hundreds of **hosts**

X

hundreds of **VMs**

X

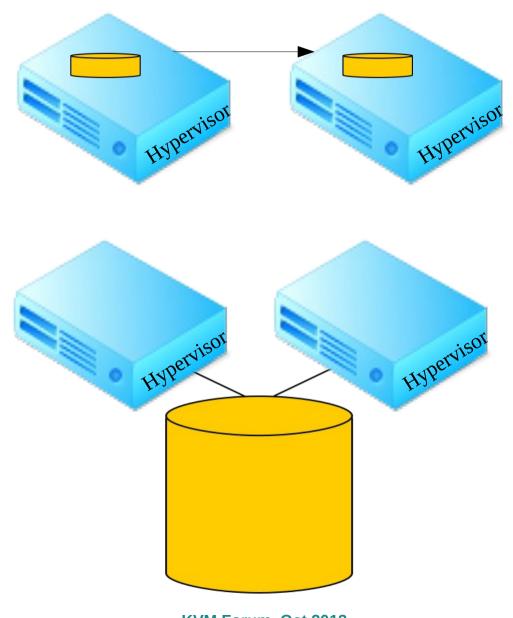
multiple **disks**

 \mathbf{X}

potentially dozens of **snapshots**

VERY BIG HEADACHE

Storage challenges


Host independent VMs

Quantity of volumes

Size of storage

Host independent VMs

Solutions

Host independent VMs

Shared storage

Quantity

- Creation on the fly
- Templates
- Centralized DB

Size

- Over-commitment
- Thin provisioning
- Templates (Shared data, same OS)

oVirt Implementation

oVirt snapshot

- Use qcow2
- file and block volumes
- provides COW volumes
- Thin volumes

File

File volumes

Quantity

- create and manage files using the file system
- "Unlimited"

Size

- Dynamic sizing
- Sparse files

Shared storage

- NAS
- Synchronizing access

Block

Block volumes

Quantity

- How do we create a block device?
- How many block devices are supported?

Size

- How can we resize a block volume?
- Is thin provisioning possible?

Shared storage

Using remote storage. But...

- Different storage vendors, models
- No standard interface

Why Block?

- File system performance overhead
- Customer requirements

Using SAN

- Initiator, Target, LUN = GUID
- **Transport** for the SCSI commands
 - FC
 - iSCSI

Redundancy

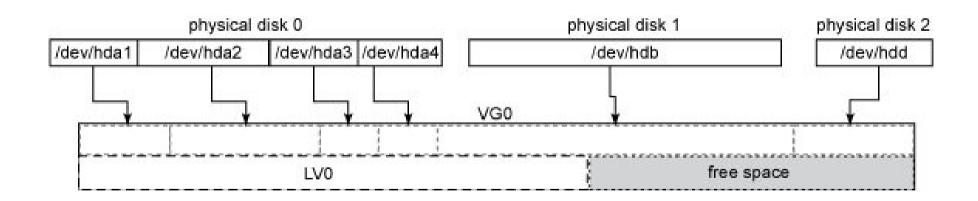
- Multiple targets for the same LUN
- How can we tell if it's the same LUN?

Redundancy and Multipath

Using Multipath

- Query the storage to obtain the GUID
- A new GUID is mapped through device-mapper
- Use rules to choose the preferred path for the device
- Fail fast
- Pause VM
- I/O failure never reaches guest OS
- Auto resume

Why device-mapper?



- mapping block devices onto virtual block devices
- Used by multiple Linux storage stack components
- Multipath, RAID, LVM, crypt, etc...

Creating and managing block images

- LVM provides a unified interface
- Volume is implemented as an LV
- Easy provisioning: lvcreate, lvremove
- Thin provisioning: lvextend

^{*} http://www.markus-gattol.name/ws/lvm.html

Very specialized use of LVM

Thin provisioning

- No use of LVM native thin provisioning
- LV initial size 1GB
- Extend LV when:
 - VM paused due to ENOSPC
 - High watermark (monitoring qemu) identified

Need a clustered solution

- create, remove, extend are VG MD writes
- Simultaneous writes will cause MD corruption
- cLVM did not scale
- No synchronization mechanisms

LVM configuration

Hybrid mode and compartmentalization

- Runtime config, separate for vdsm
 - to avoid affecting anything else on the host
 - Allow admin to make changes outside of vdsm
- LVM short filters
 - Speed up operations (by default LVM scans all devices)
 - Compartmentalize problems
 - Avoid accessing host 'owned' devices

Activate / deactivate

- Keep number of devices lower
- Avoid refresh

Clustering LVM

- LVM MDA per PV by default
 - Problems
 - In clustered environment with more than 1 PV will cause corruption
 - Requires update of multiple areas to commit transaction
 - Solution
 - only 1 active MDA
- oVirt MD as LV and VG tags
- Lock type 4 (patches upstream)

SPM

- Storage Pool Manager
- **A role** assigned to one host
- Can be migrated to any host in a data center
- Creation, deletion and manipulation of volumes
- Single meta data writer

SPM algorithm

- Cluster membership based on
 - Light-weight leases for storage-centric coordination (Chockler and Malkhi 2004)
- Single recoverable leader
- Primitives: lease and renew
- Uniform
- Simple and efficient

SANLock

- Cluster membership, like SPM, based on
 - Light-weight leases for storage-centric coordination (Chockler and Malkhi 2004)
- Leases based on
 - Disk Paxos (modified for leases)

Summary

- Storage virtualization
- oVirt implementation
- oVirt snapshot
- File implementation
- Block implementation
- Multipath
- Device-mapper
- LVM
- SPM

THANK YOU!

http://www.ovirt.org/Home engine-devel@ovirt.org vdsm-devel@lists.fedorahosted.org

#ovirt irc.oftc.net

ykaplan@redhat.com