



### KVM Forum 2008 Nested paging hardware and software

Benjamin Serebrin Jörg Rödel

Advanced Micro Devices

June 13, 2008

# Outline



- 1. Background
  - AMD64 Page Walks and Caching
  - Virtualization Terminology
  - Memory Management in Virtualized Systems
- 2. Two-Dimensional Page Walks
  - Nested Paging + Current Paging = 2D Page Walk
  - 2D Page Walk Caching
  - Hardware and Software 2D Page Walk Acceleration
- 3. KVM Implementation and Results
  - KVM Software Implementation
  - Results







#### ΔΜ **AMD64 Processor Page Walk Caching** Smarter Choice miss in TLBs Page Walk Cache (PWC) Page Table Walk Logic In all generations of AMD64 processors Stores intermediate $L_4$ L<sub>3</sub> page table values Page Walk Cache Low-latency access PWC miss Memory Hierarchy L2 cache L3 cache DRAM

# **Address Terminology**



#### Addresses

- GVA: guest virtual address
- GPA: guest physical address
- SPA: system physical address



### Virtualization Memory Management: No hardware support: Shadow Paging





### Virtualization Memory Management: Hardware support: Nested Paging





• Drawback: Extra page table steps add latency to TLB miss



# Outline



- 1. Background
  - AMD64 Page Walks and Caching
  - Virtualization Terminology
  - Address Translations in Virtualized Systems
- 2. Two-Dimensional Page Walks
  - Nested Paging + Native Paging = 2D Page Walk
  - 2D Page Walk Caching
  - Hardware and Software 2D Page Walk Acceleration
- 3. KVM Implementation and Results
  - KVM Software Implementation
  - Results



# **Two-Dimensional Page Walk Caching**

#### Average 2D Walk

- 14 PWC hits
  - 5% of PWC misses
- 6 mixed PWC hit/miss - 25% of PWC misses
- 4 PWC misses
  - 70% of PWC misses

BLUE = PWC MISSPURPLE = PWC MIXED

RED = PWC HIT



 $nL_4$ 



G  $nL_2$  $nL_1$ nL<sub>3</sub> **Difficult to cache** Map small memory regions

ΔΜ

Smarter Choice

Α

в

### **Two-Dimensional Page Walk Caching:** with the Nested TLB (NTLB)

**GV**A



**gL₄ NTLB Hit:** Skip Nested Page Walk

**gL<sub>3</sub> NTLB Hit:** Skip Nested Page Walk

**gL<sub>2</sub> NTLB Hit:** Skip Nested Page Walk

**gL<sub>1</sub> NTLB Miss:** Perform Nested Page Walk

**gPA NTLB Miss:** Perform Nested Page Walk

Simulated Results of not-exactly-real hardware – see ASPLOS08 paper





### **Sources of 2D Walk Overhead:** L2 Cache Misses



- Many PWC misses become L2 cache misses
- 1 of 4 PWC misses also miss in L2 cache



Simulated Results of not-exactly-real hardware – see ASPLOS08 paper





# Outline



- 1. Background
  - AMD64 Page Walks and Caching
  - Virtualization Terminology
  - Address Translations in Virtualized Systems
- 2. Two-Dimensional Page Walks
  - Nested Paging + Native Paging = 2D Page Walk
  - 2D Page Walk Caching
  - Hardware and Software 2D Page Walk Acceleration
- 3. KVM Implementation and Results
  - KVM Software Implementation
  - Results



# **Nested Paging Support in KVM**



- Direct mapped page table is the same as the nested page table
- Shadow Paging Code for Real Mode creates a direct mapped page table
- Nested Paging support utilizes Shadow Paging Code
- This kept implementation very simple (5 files changed, 190 insertions(+), 12 deletions(-))
- Live Migration and Guest Swapping work out of the box
- Real performance boost for KVM on AMD processors



# **Benchmarking - Environment**



- Hardware: AMD Phenom<sup>™</sup> 9550 2.2 GHz B3 silicon with 4GB RAM
- Host OS: Redhat Enterprise Linux 5.2
  - KVM-69
  - Xen-unstable 17731
- Guest OS: Redhat Enterprise Linux 5.1
- Guest: 2 VCPUs and 2 GB Memory
- For benchmarks on bare metal (Native) host was booted with "maxcpus=2 mem=2G"

# Kernbench Performance: Shadow Paging vs. Native





# Kernbench Performance: Nested paging KVM Nested 4KB pages





# Kernbench Performance: Nested paging Performance benefits from large pages





# LMBench Performance: Shadow Paging vs. Native





# LMBench Performance: Nested paging KVM Nested 4KB pages





# LMBench Performance: Nested paging Performance benefits from large pages





### Conclusion Nested Paging



- A HW solution to reduce memory management overhead
- Also introduces overhead on TLB misses

# Hardware overhead can be significantly reduced

- Nested TLB to skip nested page walks and Page walk cache
- Approach native speed with these techniques

### Overhead elimination more difficult

- Some 2D walk references always miss in PWC and L2 cache
- Exclusive use of 2MB pages in hypervisor is difficult

# KVM Implements Nested Paging

- Performance improves and memory footprint shrinks
- Best performance from use of large nested page sizes





#### **Trademark Attribution**

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

