
Migration
How to hop from machine to machine without losing state

Red Hat

Juan Quintela

August 8, 2010

Abstract

This talk describes current migration status, and ideas for
future work.

Contents

1 Introduction

2 How to describe state State

3 Future Work

Section 1

Introduction

Introduction

Types of migration

savevm/loadvm

migration

live migration

Introduction

Types of migration

savevm/loadvm

migration

live migration

Introduction

Types of migration

savevm/loadvm

migration

live migration

Section 2

How to describe state State

How to describe state State

Old way: simple device� �
static void adb mouse save(QEMUFile *f , void *opaque)
{

MouseState *s = (MouseState *)opaque;
qemu put sbe32s(f , &s−>buttons state);
qemu put sbe32s(f , &s−>last buttons state);
qemu put sbe32s(f , &s−>dx);
qemu put sbe32s(f , &s−>dy);
qemu put sbe32s(f , &s−>dz);

}
static int adb mouse load(QEMUFile *f , void *opaque, int version id)
{

MouseState *s = (MouseState *)opaque;
i f (version id != 1)

return −EINVAL;
qemu get sbe32s(f , &s−>buttons state);
qemu get sbe32s(f , &s−>last buttons state);
qemu get sbe32s(f , &s−>dx);
qemu get sbe32s(f , &s−>dy);
qemu get sbe32s(f , &s−>dz);
return 0;

}
� �

How to describe state State

New way: VMState

� �
static const VMStateDescription vmstate adb mouse = {

.name = ”adb mouse”,

. version id = 1,

.minimum version id = 1,

.minimum version id old = 1,

. fields = (VMStateField []) {
VMSTATEINT32(buttons state , MouseState) ,
VMSTATEINT32(last buttons state , MouseState) ,
VMSTATEINT32(dx, MouseState) ,
VMSTATEINT32(dy, MouseState) ,
VMSTATEINT32(dz, MouseState) ,
VMSTATEENDOFLIST()

}
}
� �

How to describe state State

Arrays and code: old way� �
static void ads7846 save(QEMUFile *f , void *opaque)
{

ADS7846State *s = (ADS7846State *) opaque;
int i ;
for (i = 0; i < 8; i ++)

qemu put be32(f , s−>input[i]) ;
qemu put be32(f , s−>noise);
qemu put be32(f , s−>cycle);
qemu put be32(f , s−>output);

}
static int ads7846 load(QEMUFile *f , void *opaque, int version id)
{

ADS7846State *s = (ADS7846State *) opaque;
int i ;
for (i = 0; i < 8; i ++)

s−>input[i] = qemu get be32(f);
s−>noise = qemu get be32(f);
s−>cycle = qemu get be32(f);
s−>output = qemu get be32(f);
s−>pressure = 0;
ads7846 int update(s);
return 0;

}
� �

How to describe state State

Arrays and code: now VMState� �
static int ads7846 post load(void *opaque, int version id)
{

ADS7846State *s = opaque;
s−>pressure = 0;
ads7846 int update(s);
return 0;

}
static const VMStateDescription vmstate ads7846 = {

.name = ”ads7846”,

. version id = 0,

.minimum version id = 0,

.minimum version id old = 0,

.post load = ads7846 post load,

. fields = (VMStateField []) {
VMSTATEINT32ARRAY(buttons state , ADS7846State, 8),
VMSTATEINT32(noise , ADS7846State) ,
VMSTATEINT32(cycle , ADS7846State) ,
VMSTATEINT32(output, ADS7846State) ,
VMSTATEENDOFLIST()

}
}
� �

How to describe state State

Versions

� �
. . .
i f (version id >= 10) {

n−>alluni = qemu get byte(f);
n−>nomulti = qemu get byte(f);
n−>nouni = qemu get byte(f);
n−>nobcast = qemu get byte(f);

}
. . .
� �

How to describe state State

Versions, now on VMState

� �
. . .
VMSTATEUINT8V(alluni , VirtIONet, 10),
VMSTATEUINT8V(nomulti, VirtIONet, 10),
VMSTATEUINT8V(nouni, VirtIONet, 10),
VMSTATEUINT8V(nobcast, VirtIONet, 10),
. . .
� �

How to describe state State

.. and tests

� �
static bool version is 5(void *opaque, int version id)
{

return version id == 5;
}

. . .
VMSTATEUINT32TEST(halted , CPUState, version is 5) ,
. . .
� �

How to describe state State

More state for a device

Increase version

problem with stable branches

state is a hierarchy

How to describe state State

More state for a device

Increase version

problem with stable branches

state is a hierarchy

How to describe state State

More state for a device

Increase version

problem with stable branches

state is a hierarchy

How to describe state State

Subsections

Some state is optional

newer versions always understand old versions

allow some migration to older versions

How to describe state State

Subsections

Some state is optional

newer versions always understand old versions

allow some migration to older versions

How to describe state State

Subsections

Some state is optional

newer versions always understand old versions

allow some migration to older versions

How to describe state State

Subsections (II)� �
static bool ide drive pio state needed(void *opaque)
{

IDEState *s = opaque;
return (s−>status &DRQSTAT) != 0;

}
const VMStateDescription vmstate ide drive pio state = {

.name = ”ide drive/pio state”,
. . .
}
const VMStateDescription vmstate ide drive = {

.name = ”ide drive”,
. . .

. subsections = (VMStateSubsection []) {
{

.vmsd =&vmstate ide drive pio state ,

.needed = ide drive pio state needed ,
}, {

/* empty */
}

}
� �

How to describe state State

More VMState

arrays of variable length

arrays of pointers

structs

arrays of structs

. . .

How to describe state State

More VMState

arrays of variable length

arrays of pointers

structs

arrays of structs

. . .

How to describe state State

More VMState

arrays of variable length

arrays of pointers

structs

arrays of structs

. . .

How to describe state State

More VMState

arrays of variable length

arrays of pointers

structs

arrays of structs

. . .

How to describe state State

More VMState

arrays of variable length

arrays of pointers

structs

arrays of structs

. . .

How to describe state State

RAM

it’s BIG, a.k.a. it is going to take time

live migration makes things more complicated

it’s BIG

layout changes with hotplug

How to describe state State

RAM

it’s BIG, a.k.a. it is going to take time

live migration makes things more complicated

it’s BIG

layout changes with hotplug

How to describe state State

RAM

it’s BIG, a.k.a. it is going to take time

live migration makes things more complicated

it’s BIG

layout changes with hotplug

How to describe state State

RAM

it’s BIG, a.k.a. it is going to take time

live migration makes things more complicated

it’s BIG

layout changes with hotplug

How to describe state State

Block devices

they are backed by files

files are external to QEMU

qcow2

NFS

How to describe state State

Block devices

they are backed by files

files are external to QEMU

qcow2

NFS

How to describe state State

Block devices

they are backed by files

files are external to QEMU

qcow2

NFS

How to describe state State

Block devices

they are backed by files

files are external to QEMU

qcow2

NFS

Section 3

Future Work

Future Work

End VMState conversion

virtio: patches exist, have to rebase and sent.

slirp: difficult.

rest of cpus: work and testing.

other 73 devices (not pc ones).

Future Work

End VMState conversion

virtio: patches exist, have to rebase and sent.

slirp: difficult.

rest of cpus: work and testing.

other 73 devices (not pc ones).

Future Work

End VMState conversion

virtio: patches exist, have to rebase and sent.

slirp: difficult.

rest of cpus: work and testing.

other 73 devices (not pc ones).

Future Work

End VMState conversion

virtio: patches exist, have to rebase and sent.

slirp: difficult.

rest of cpus: work and testing.

other 73 devices (not pc ones).

Future Work

VMState simplification

removal of field version (use test)

removal of load state old

removal of pre 0.12 state?

arrays can be handled better inside types

Future Work

VMState simplification

removal of field version (use test)

removal of load state old

removal of pre 0.12 state?

arrays can be handled better inside types

Future Work

VMState simplification

removal of field version (use test)

removal of load state old

removal of pre 0.12 state?

arrays can be handled better inside types

Future Work

VMState simplification

removal of field version (use test)

removal of load state old

removal of pre 0.12 state?

arrays can be handled better inside types

Future Work

Migration Format

add size field?

add checksum field?

self descriptive?

Future Work

Migration Format

add size field?

add checksum field?

self descriptive?

Future Work

Migration Format

add size field?

add checksum field?

self descriptive?

Future Work

main QEMU state

current: running/stopped

outgoing?: migration finished,

incoming?: we are expecting migration

Future Work

main QEMU state

current: running/stopped

outgoing?: migration finished,

incoming?: we are expecting migration

Future Work

main QEMU state

current: running/stopped

outgoing?: migration finished,

incoming?: we are expecting migration

Future Work

Incoming migration

create a command

create machine from description

Future Work

Incoming migration

create a command

create machine from description

Future Work

Users outside QEMU

crash

The end.
Thanks for listening.

	Introduction
	How to describe state State
	Future Work

