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Abstract

This talk describes current migration status, and ideas for
future work.
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How to describe state State

Old way: simple device� �
static void adb mouse save(QEMUFile *f , void *opaque)
{

MouseState *s = (MouseState *)opaque;
qemu put sbe32s(f , &s−>buttons state);
qemu put sbe32s(f , &s−>last buttons state);
qemu put sbe32s(f , &s−>dx);
qemu put sbe32s(f , &s−>dy);
qemu put sbe32s(f , &s−>dz);

}
static int adb mouse load(QEMUFile *f , void *opaque, int version id)
{

MouseState *s = (MouseState *)opaque;
i f (version id != 1)

return −EINVAL;
qemu get sbe32s(f , &s−>buttons state);
qemu get sbe32s(f , &s−>last buttons state);
qemu get sbe32s(f , &s−>dx);
qemu get sbe32s(f , &s−>dy);
qemu get sbe32s(f , &s−>dz);
return 0;

} 
� �



How to describe state State

New way: VMState

� �
static const VMStateDescription vmstate adb mouse = {

.name = ”adb mouse”,

. version id = 1,

.minimum version id = 1,

.minimum version id old = 1,

. fields = (VMStateField []) {
VMSTATEINT32(buttons state , MouseState) ,
VMSTATEINT32(last buttons state , MouseState) ,
VMSTATEINT32(dx, MouseState) ,
VMSTATEINT32(dy, MouseState) ,
VMSTATEINT32(dz, MouseState) ,
VMSTATEENDOFLIST()

}
} 
� �



How to describe state State

Arrays and code: old way� �
static void ads7846 save(QEMUFile *f , void *opaque)
{

ADS7846State *s = (ADS7846State *) opaque;
int i ;
for ( i = 0; i < 8; i ++)

qemu put be32(f , s−>input[ i ]) ;
qemu put be32(f , s−>noise);
qemu put be32(f , s−>cycle);
qemu put be32(f , s−>output);

}
static int ads7846 load(QEMUFile *f , void *opaque, int version id)
{

ADS7846State *s = (ADS7846State *) opaque;
int i ;
for ( i = 0; i < 8; i ++)

s−>input[ i ] = qemu get be32(f );
s−>noise = qemu get be32(f );
s−>cycle = qemu get be32(f );
s−>output = qemu get be32(f );
s−>pressure = 0;
ads7846 int update(s);
return 0;

} 
� �



How to describe state State

Arrays and code: now VMState� �
static int ads7846 post load(void *opaque, int version id)
{

ADS7846State *s = opaque;
s−>pressure = 0;
ads7846 int update(s);
return 0;

}
static const VMStateDescription vmstate ads7846 = {

.name = ”ads7846”,

. version id = 0,

.minimum version id = 0,

.minimum version id old = 0,

.post load = ads7846 post load,

. fields = (VMStateField []) {
VMSTATEINT32ARRAY(buttons state , ADS7846State, 8),
VMSTATEINT32(noise , ADS7846State) ,
VMSTATEINT32(cycle , ADS7846State) ,
VMSTATEINT32(output, ADS7846State) ,
VMSTATEENDOFLIST()

}
} 
� �



How to describe state State

Versions

� �
. . .
i f (version id >= 10) {

n−>alluni = qemu get byte(f );
n−>nomulti = qemu get byte(f );
n−>nouni = qemu get byte(f );
n−>nobcast = qemu get byte(f );

}
. . . 
� �



How to describe state State

Versions, now on VMState

� �
. . .
VMSTATEUINT8V(alluni , VirtIONet, 10),
VMSTATEUINT8V(nomulti, VirtIONet, 10),
VMSTATEUINT8V(nouni, VirtIONet, 10),
VMSTATEUINT8V(nobcast, VirtIONet, 10),
. . . 
� �



How to describe state State

.. and tests

� �
static bool version is 5(void *opaque, int version id)
{

return version id == 5;
}

. . .
VMSTATEUINT32TEST(halted , CPUState, version is 5) ,
. . . 
� �
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How to describe state State

Subsections (II)� �
static bool ide drive pio state needed(void *opaque)
{

IDEState *s = opaque;
return (s−>status &DRQSTAT) != 0;

}
const VMStateDescription vmstate ide drive pio state = {

.name = ”ide drive/pio state”,
. . .
}
const VMStateDescription vmstate ide drive = {

.name = ”ide drive”,
. . .

. subsections = (VMStateSubsection []) {
{

.vmsd =&vmstate ide drive pio state ,

.needed = ide drive pio state needed ,
}, {

/* empty */
}

} 
� �
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Future Work

Users outside QEMU

crash



The end.
Thanks for listening.
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