- redhat.

Migration
How to hop from machine to machine without losing state
Red Hat

Juan Quintela
August 8, 2010

Abstract

This talk describes current migration status, and ideas for
future work.

Q redhat

Contents

Introduction

How to describe state State

Future Work

- redhat.

Section 1
Introduction

Introduction
Q redhat

Types of migration

savevm /loadvm

Introduction
Q redhat

Types of migration

savevm /loadvm

migration

Q redhat

Types of migration

savevm /loadvm
migration

live migration

Introduction

- redhat.

Section 2
How to describe state State

How to describe state State

Q redhat

Old way: simple device

static void adb_mouse_save(QEMUFile xf, void xopaque)

{
MouseState *s = (MouseState *)opaque;
gemu_put_sbe32s(f, & —>buttons_state);
gemu_put_sbe32s(f, &s—>last_buttons_state);
gemu_put_sbe32s(f, &s—dx);
gemu_put_sbe32s(f, &s—>dy);
gemu_put_sbe32s(f, &s—dz);

}

static int adb_mouse_load(QEMUFile *f, void xopaque, int version_id)
{
MouseState *s = (MouseState *)opaque;
if (version_id 1= 1)
return —EINVAL;
gemu_get_sbe32s(f, &s—buttons_state);
gemu_get_sbe32s(f, &—>last_buttons_state);
gemu_get_sbe32s(f, &s—>dx);
gemu_get_sbe32s(f, &s—>dy);
gemu_get_sbe32s(f, &s—>dz);
return O;

How to describe state State
Q redhat

New way: VMState

static const VMStateDescription vmstate_adb_mouse = {

.name = "adb_mouse” ,

.version_id = 1,

.minimum_version_id = 1,

.minimum_version_id_old = 1,

.fields = (VMStateField []) {
VMSTATEINT(buttons_state, MouseState),
VMSTATEINT3(last_buttons_state, MouseState),
VMSTATEINT(dx, MouseState),
VMSTATEINT32(dy, MouseState),
VMSTATEINT32(dz, MouseState),
VMSTATEEND.OF LIST()

How to describe state State
Q redhat

Arrays and code: old way

static void ads7846_save(QEMUFile *f, void xopaque)
{
ADS7846State xs = (ADS7846State %) opaque;
int i;
for (i=0; i<8; i+t
gemu_put_be32(f, s>input[i]);
gemu_put_be32(f, s—=>noise);
gemu_put_be32(f, s=>cycle);
gemu_put_be32(f, s—>output);
}
static int ads7846_load(QEMUFile *f, void *opaque, int version_id)
{
ADST7846State *s = (ADS7846State *) opaque;
int i;
for (i=0; i<8; i+
s—=input[i] = gemu_get_be32(f);
s—=noise = gemu_get_be32(f);
s>cycle = gemu_get_be32(f);
s—output = gqemu_get_be32(f);
s—>pressure = 0;
ads7846_int_update(s);
return O;

How to describe state State
Q redhat

Arrays and code: now VMState

static int ads7846_post_load(void *opaque, int version_id)
{
ADST7846State *s = opaque;
s—>pressure = 0;
ads7846_int_update(s);
return O;
}
static const VMStateDescription vmstate_ads7846 = {
.name = "ads7846" ,
.version_id = 0,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.post_load = ads7846_post_load,
.fields = (VMStateField []) {
VMSTATEINTR2 ARRAY(buttons_state, ADS7846State, 8),
VMSTATEINT(noise, ADS7846State),
VMSTATEINT32(cycle, ADS7846State),
VMSTATEINT3(output, ADS7846State),
VMSTATEEND.OF LIST()

How to describe state State
Q redhat

Versions

if (version_id >=10) {
n=>alluni = gemu_get_byte(f);
n—nomulti = gemu_get_byte(f);
n—=nouni = gemu_get_byte(f);
n=>nobcast = qemu_get_byte(f);

How to describe state State
Q redhat

Versions, now on VMState

VMSTATEUNT8V(alluni, VirtlONet, 10),
VMSTATEUNT8V(nomulti, VirtlONet, 10),
VMSTATEUNT8V(nouni, VirtlONet, 10),

VMSTATEUNT8V(nobcast, VirtlONet, 10),

How to describe state State
Q redhat

.. and tests

static bool version_is_5(void *opaque, int version_id)

{
}

return version_id =—5;

VMSTATEUNT32TEST(halted, CPUState, version_is_5),

How to describe state State
Q redhat

More state for a device

Increase version

How to describe state State
Q redhat

More state for a device

Increase version

problem with stable branches

Q redhat

More state for a device

Increase version
problem with stable branches

state is a hierarchy

How to describe state State

How to describe state State
Q redhat

Subsections

Some state is optional

How to describe state State
Q redhat

Subsections

Some state is optional

newer versions always understand old versions

How to describe state State
Q redhat

Subsections

Some state is optional
newer versions always understand old versions

allow some migration to older versions

How to describe state State

Q redhat
Subsections (I1)

static bool ide_drive_pio_state_needed(void *opaque)

IDEState *s = opaque;
return (s—>status & DRQSTAT) != 0;

const VMStateDescription vmstate_ide_drive_pio_state = {
.name = "ide_drive/pio_state”,

const VMStateDescription vmstate_ide_drive = {

.name = "ide_drive”,

.subsections = (VMStateSubsection []) {

{

.vmsd = &vmstate_ide_drive_pio_state,

.needed = ide_drive_pio_state_needed,
boA

/* empty */

How to describe state State
Q redhat

More VMState

arrays of variable length

How to describe state State
Q redhat

More VMState

arrays of variable length

arrays of pointers

How to describe state State
Q redhat

More VMState

arrays of variable length
arrays of pointers

structs

How to describe state State
Q redhat

More VMState

arrays of variable length
arrays of pointers
structs

arrays of structs

How to describe state State
Q redhat

More VMState

arrays of variable length
arrays of pointers
structs

arrays of structs

How to describe state State
Q redhat

RAM

it's BIG, a.k.a. it is going to take time

How to describe state State
Q redhat

RAM

it's BIG, a.k.a. it is going to take time

live migration makes things more complicated

How to describe state State
Q redhat

RAM

it's BIG, a.k.a. it is going to take time
live migration makes things more complicated
it's BIG

How to describe state State
Q redhat

RAM

it's BIG, a.k.a. it is going to take time

live migration makes things more complicated
it's BIG

layout changes with hotplug

How to describe state State
Q redhat

Block devices

they are backed by files

How to describe state State
Q redhat

Block devices

they are backed by files
files are external to QEMU

Q redhat

Block devices

they are backed by files
files are external to QEMU

gcow?2

How to describe state State

How to describe state State
Q redhat

Block devices

they are backed by files
files are external to QEMU
gcow?2

NFS

- redhat.

Section 3
Future Work

Future Work
Q redhat

End VMState conversion

virtio: patches exist, have to rebase and sent.

Future Work
Q redhat

End VMState conversion

virtio: patches exist, have to rebase and sent.

slirp: difficult.

Future Work
Q redhat

End VMState conversion

virtio: patches exist, have to rebase and sent.
slirp: difficult.

rest of cpus: work and testing.

Future Work
Q redhat

End VMState conversion

virtio: patches exist, have to rebase and sent.
slirp: difficult.
rest of cpus: work and testing.

other 73 devices (not pc ones).

Future Work
Q redhat

VMState simplification

removal of field version (use test)

Future Work
Q redhat

VMState simplification

removal of field version (use test)

removal of load_state_old

Q redhat
VMState simplification

removal of field version (use test)
removal of load_state_old

removal of pre 0.12 state?

Future Work

Future Work
Q redhat

VMState simplification

removal of field version (use test)
removal of load_state_old
removal of pre 0.12 state?

arrays can be handled better inside types

Future Work
Q redhat

Migration Format

add size field?

Future Work
Q redhat

Migration Format

add size field?
add checksum field?

Q redhat

Migration Format

add size field?
add checksum field?

self descriptive?

Future Work

Future Work
Q redhat

main QEMU state

current: running/stopped

Future Work
Q redhat

main QEMU state

current: running/stopped

outgoing?: migration finished,

Qredhat
main QEMU state

current: running/stopped
outgoing?: migration finished,

incoming?: we are expecting migration

Future Work

Future Work
Q redhat

Incoming migration

create a command

Future Work
Q redhat

Incoming migration

create a command

create machine from description

Future Work
Q redhat

Users outside QEMU

crash

- redhat.

The end.

Thanks for listening.

	Introduction
	How to describe state State
	Future Work

