Nahanni
a shared memory interface for KVM

Cam Macdonell
University of Alberta
cam@cs.ualberta.ca
Sharing Memory

Qemu Userspace Qemu Userspace Qemu Userspace

Host
Sharing Memory

- Use-cases?
 - data stage-in/stage-out
 - pointer-based data structures
Sharing Memory

- caching
- data sharing
- IPC
Nahanni* Overview

- Nahanni is a mechanism for sharing host memory with VMs running on that host
 - zero-copy access to data
 - interrupt/signalling mechanism
 - guest/guest and host/guest

*also known as "ivshmem" on the KVM/qemu lists
Qemu maps shared memory into RAM
Qemu maps shared memory into RAM

Exposed as a PCI BAR
Qemu maps shared memory into RAM

mmap to user-level

Exposed as a PCI BAR

Qemu maps shared memory into RAM

/dev/shm/<name>
Using Nahanni

Start the server

% ivshmem_server -m 512 -p /tmp/nahanni

Add chardev and device to the Qemu command line

-chardev socket,path=/tmp/nahanni,id=nahanni
-device ivshmem,chardev=nahanni,size=512m

OR without interrupts

-device ivshmem,shm=nahanni,size=512m
Guest Interface

- Nahanni uses the UIO driver interface in the guest
- Initialization
 - mmap registers (map region #0)
 - mmap shared memory region (map region #1)
- Synchronization primitives
 - POSIX spinlocks work in shared memory
 - cond. variables/semaphores do not
 - GCC atomic operations work
 - MCS locks
 - Barriers
 - Interrupts
Implementation (interrupts)

- Interrupts are triggered via writes to the interrupt register

 \[
 \text{regs[INTERRUPT]} = (\text{dest} \ll 16) \mid \text{vector};
 \]

- MSI-X interrupts optional
- ioeventfd optimization
Implementation (interrupts)

- Interrupts trigger writes to the eventfds from Qemu

```c
uint64_t write_one = 1;
write(peers[dest].eventfds.vector, &value, 8);
```

- With KVM's ioeventfd we can avoid the Qemu process

```c
kvm_set_ioeventfd_mmio_long(peers[dest].eventfds[i],
   reg_addr + INTERRUPT, (dest << 16) | vector, 1);
```
Possible Use Cases

- Simulations
 - NASA using shared memory for multiple-VM simulations that run on a custom OS
 - Particle simulation (e.g. FLUID)
- Sharing application-level data
 - Moving data in Map/Reduce applications
 - Hadoop
 - Pointer-based data in Map/Reduce
 - Phoenix
- Host/guest applications
Performance

- Data staging benchmark (host-guest)
 - Nahanni
 - ring buffer using interrupts
 - Netcat & SCP-HPN
 - over virtio-net/vhost
 - 9p
- Transport mechanism is isolated
 - warm cache on host
 - no disk I/O on read
 - file is copied to /dev/null in guest
 - no disk I/O on write
Performance

Data Stage-in

- NAHANNI
- NETCAT
- SCP-HPN
- 9P

File size:
- 300mb
- 700mb
- 2g
- 4g

Time (secs):
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40

Graph showing performance comparison for different file sizes and tools.
Conclusions and Future Work

- Nahanni is a mechanism for sharing host memory with (possibly) multiple VMs
- Synchronization primitives
 - barrier implementation
 - reliable signalling (in progress)
- Memory Allocator for Nahanni Shared Memory
 - modifying `talloc` allocator that uses memory pools for allocation (in progress)
 - from Samba
- Applications (in progress)
Acknowledgements

Avi Kivity, Anthony Liguori, Alex Graf and the Qemu/KVM development communities for all the feedback

Paul Lu, Jeremy Nickurak, Adam Wolfe Gordon, Xiaodi Ke from the Trellis group at the U of A

Thank you

Cam Macdonell
cam@cs.ualberta.ca

www.gitorious.org/nahanni
www.gitorious.org/nahanni

- shared memory server
- device driver
- linux distro init scripts
- example programs
Sharing Memory

- caching?
- data sharing?
- IPC?
Implementation (shared memory)