Agenda

- Introduce COarse-grain LOck-stepping
- COLO Design and Technology Details
- Current Status Of COLO In KVM
- Further Work About COLO
Non-Stop Service with VM Replication

Virtual Machine (VM) replication

- A software solution for business continuity and disaster recovery through application-agnostic hardware fault tolerance by replicating the state of primary VM (PVM) to secondary VM (SVM) on different physical node.
Existing VM Replication Approaches

- **Replication Per Instruction: Lock-stepping**
 - Execute in parallel for deterministic instructions
 - Lock and step for un-deterministic instructions

- **Replication Per Epoch: Continuous Checkpoint**
 - Secondary VM is synchronized with Primary VM per epoch
 - Output is buffered within an epoch
Problems

- Lock-stepping
 - Excessive replication overhead
 - Memory access in an MP-guest is un-deterministic

- Continuous Checkpoint
 - Extra network latency
 - Excessive VM checkpoint overhead
What Is COLO

- **VM and Clients model**
 - VM and Clients are a system of networked request-response system
 - Clients only care about the response from the VM

- **COarse-grain LOck-stepping VMs (COLO)**
 - PVM and SVM execute in parallel
 - Duplicates client’s request stream to SVM
 - Compare the output packets from PVM and SVM
 - Synchronize SVM state with PVM when their responses (network packets) are not identical
Why Is COLO Better

- **Comparing with Continuous VM checkpoint**
 - No buffering-introduced latency
 - Less checkpoint frequency
 - On demand vs periodic

- **Comparing with lock-stepping**
 - Eliminate excessive overhead of un-deterministic instruction execution due to MP-guest memory access
Agenda

- Introduce COarse-grain LOck-stepping
- COLO Design and Technology Details
- Current Status Of COLO In KVM
- Further Work About COLO
Architecture Of COLO

COarse-grain LOck-stepping Virtual Machine for Non-stop Service
How Block Replication Work

From SVM’s point of view: Its storage is disk-buffer whose parent backing file is Secondary Disk (Or Shared Disk)

Checkpoint: Disk buffer will be emptied to achieve block replication

Failover: Disk buffer will be written back to the ‘parent’ disk

Non-Shared disk workflow

Shared disk workflow
Based on live migration
- PVM’s memory/device data be stored in extra memory-buffer of SVM before be synchronized to SVM
COLO Proxy Design

Scheme:

- **Kernel scheme:**
 - Based on kernel TCP/IP stack and netfilter component
 - Can support vhost-net, virtio, e1000, rtl8139, etc
 - Better performance but less flexible (Need modify netfilter/iptables and kernel)

- **Userspace scheme:**
 - Totally realized in QEMU
 - Based on QEMU’s netfilter components and SLIRP component
 - Not support vhost-net, but e1000, rtl8139
 - More flexible
Proxy Design (Userspace scheme)

- **Filter mirror**: copy and forward client’s packets to SVM
- **Filter redirector**: redirect net packets
- **COLO compare**: compare PVM’s and SVM’s net packets;
- **Filter rewriter**: adjust tcp packets’ ack and tcp packets’ seq
COLO Performance In KVM

Performance (Based on kernel proxy)

The experimental data is normalized to the native system
Agenda

- Introduce COarse-grain LOck-stepping
- COLO Design and Technology Details
- Current Status Of COLO In KVM
- Further Work About COLO
Status of COLO In KVM

COLO Framework:
- Include VM state checkpoint process, failover process
- Patch set v18 had been post

COLO block replication:
- Only including non-shared storage replication scheme
- Already been merged to branch
 https://github.com/stefanha/qemu/commits/block-next

COLO proxy:
- netfilter base/buffer/mirror plugins have been merged
- Userspace packets compare is WIP and v11 version has been posted
Agenda

- Introduce COarse-grain LOck-stepping
- COLO Design and Technology Details
- Current Status Of COLO In KVM
- Further Work About COLO
TODO

- Continuous VM replication development
- Support shared storage
- Optimize performance
- Reduce VM’s downtime while do checkpoint
- Improve storage and network performance
- Implement the heartbeat component
- Support COLO in libvirt
Copyright©2011 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.